The extensive research of two-dimensional layered materials has revealed that valleys, as energy extrema in momentum space, could offer a new degree of freedom for carrying information. Based on this concept, researchers have predicted valley-Hall topological insulators that could support valley-polarized edge states at non-trivial domain walls. Recently, several kinds of photonic and sonic crystals have been proposed as classical counterparts of valley-Hall topological insulators. However, direct experimental observation of valley-polarized edge states in photonic crystals has remained difficult until now. Here, we demonstrate a designer surface plasmon crystal comprising metallic patterns deposited on a dielectric substrate, which can become a valley-Hall photonic topological insulator by exploiting the mirror-symmetry-breaking mechanism. Topological edge states with valley-dependent transport are directly visualized in the microwave regime. The observed edge states are confirmed to be fully valley-polarized through spatial Fourier transforms. Topological protection of the edge states at sharp corners is also experimentally demonstrated.
A 2D polystyrene colloidal crystal self‐assembled on a flat gold surface supports multiple photonic and plasmonic propagating resonance modes. For both classes of modes, the quality factors can exceed 100, higher than the quality factor of surface plasmons (SP) at a polymer–gold interface. The spatial energy distribution of those resonance modes are carefully studied by measuring the optical response of the hybrid plasmonic–photonic crystal after coating with dielectric materials under different coating profiles. Computer simulations with results closely matching those of experiments provide a clear picture of the field distribution of each resonance mode. For the SP modes, there is strong confinement of electromagnetic energy near the metal surface, while for optical modes, the field is confined inside the spherical particles, far away from the metal. Coating of dielectric material on the crystal results in a large shift in optical features. A surface sensor based on the hybrid plasmonic–photonic crystal is proposed, and it is shown to have atomic layer sensitivity. An example of ethanol vapor sensing based on physisorption of ethanol onto the sensor surface is demonstrated.
We study theoretically the dispersion of plasmonic honeycomb lattices and find Dirac spectra for both dipole and quadrupole modes. Zigzag edge states derived from Dirac points are found in ribbons of these honeycomb plasmonic lattices. The zigzag edge states for out-of-plane dipole modes are closely analogous to the electronic ones in graphene nanoribbons. The edge states for in-plane dipole modes and quadrupole modes, however, have rather unique characters due to the vector nature of the plasmonic excitations. The conditions for the existence of plasmonic edge states are derived analytically.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.