Unprecedented fast and efficient complexation of Sc was demonstrated with the chelating agent AAZTA (AAZTA=1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-methylperhydro-1,4-diazepine) under mild experimental conditions. The robustness of the Sc(AAZTA) chelate and conjugated biomolecules thereof is further shown by in vivo PET imaging in healthy and tumor mice models. The new results pave the way towards development of efficient Sc-based radiopharmaceuticals using the AAZTA chelator.
In the frame of “precision medicine”, the scandium radionuclides have recently received considerable interest, providing personalised adjustment of radiation characteristics to optimize the efficiency of medical care or therapeutic benefit for particular groups of patients. Radionuclides of scandium, namely scandium-43 and scandium-44 (43/44Sc) as positron emitters and scandium-47 (47Sc), beta-radiation emitter, seem to fit ideally into the concept of theranostic pair. This paper aims to review the work on scandium isotopes production, coordination chemistry, radiolabeling, preclinical studies and the very first clinical studies. Finally, standardized procedures for scandium-based radiopharmaceuticals have been proposed as a basis to pave the way for elaboration of the Ph.Eur. monographs for perspective scandium radionuclides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.