The production of chemokines by astrocytes constitutes an important component of neuroinflammatory processes in the brain. As the transcriptional activator retinoic acid (RA), used for chemotherapy and dermatological applications, exerts anti-inflammatory effects on monocytes and lymphocytes, we have tested whether the physiologically occurring isomer, alltrans RA, affects chemokine expression by astrocytes. Under control conditions, primary cultures of murine cortical astrocytes expressed no or very low levels of CCL and CXCL chemokines. After treatment with bacterial lipopolysaccharides to simulate inflammation in vitro, we detected a strong increase in the release of CCL2 (to > 4 ng/mL in cell culture supernatant), CCL3 (> 20 ng/mL), CCL5 (> 25 ng/mL), CXCL1 (> 30 ng/mL) and CXCL2 (> 20 ng/mL). Although simultaneous exposure to RA did not significantly affect this response, 12 h pre-treatment with 0.1 lM all-trans RA strongly suppressed mRNA expression and protein release of all chemokines. The anti-inflammatory activity of RA engaged RA and retinoid X receptors and correlated with a decreased expression of the lipopolysaccharides co-receptor CD14. A minor reduction of nuclear NF-jB was observed but not significant, activation of Jun amino-terminal kinase, p38 and signal transducer and activator of transcription 3 were not altered by RA. The results suggest that retinoids should be further investigated as candidates for the treatment of neuroinflammation.
Disruptions in the cortico-limbic emotion regulation networks have been linked to depression, anxiety, impulsivity, and aggression. Altered transmission of the central nervous serotonin (5-HT) contributes to dysfunctions in the cognitive control of emotions. To date, studies relating to pharmaco-fMRI challenging of the 5-HT system have focused on emotion processing for facial expressions. We investigated effects of a single-dose selective 5-HT reuptake inhibitor (escitalopram) on emotion regulation during virtual violence. For this purpose, 38 male participants played a violent video game during fMRI scanning. The SSRI reduced neural responses to violent actions in right-hemispheric inferior frontal gyrus and medial prefrontal cortex encompassing the anterior cingulate cortex (ACC), but not to non-violent actions. Within the ACC, the drug effect differentiated areas with high inhibitory 5-HT1A receptor density (subgenual s25) from those with a lower density (pregenual p32, p24). This finding links functional responses during virtual violent actions with 5-HT neurotransmission in emotion regulation networks, underpinning the ecological validity of the 5-HT model in aggressive behavior. Available 5-HT receptor density data suggest that this SSRI effect is only observable when inhibitory and excitatory 5-HT receptors are balanced. The observed early functional changes may impact patient groups receiving SSRI treatment.
MAOA-L carriers were more susceptable to a central 5-HT challenge in cortico-limbic networks. Such vulnerability of the cortical serotonergic system may contribute to the emergence of antisocial behavior after systemic challenges, observed as gene-environment interaction. Hum Brain Mapp 38:1622-1635, 2017. © 2016 Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.