In this paper, we present a new design of hollow, out-of-plane polymeric microneedle with cylindrical side-open holes for transdermal drug delivery (TDD) applications. A detailed literature review of existing designs and analysis work on microneedles is first presented to provide a comprehensive reference for researchers working on design and development of micro-electromechanical system (MEMS)-based microneedles and a source for those outside the field who wish to select the best available microneedle design for a specific drug delivery or biomedical application. Then, the performance of the proposed new design of microneedles is numerically characterized in terms of microneedle strength and flow rate at applied inlet pressures. All the previous designs of hollow microneedles have side-open holes in the lumen section with no integrated reservoir on the same chip. We have proposed a new design with side-open holes in the conical section to ensure drug delivery on skin insertion. Furthermore, the present design has an integrated drug reservoir on the back side of the microneedles. Since MEMS-based, hollow, side-open polymeric microneedles with integrated reservoir is a new research area, there is a notable lack of applicable mathematical models to analytically predict structural and fluid flow under various boundary conditions. That is why, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been used to facilitate design optimization before fabrication. The analysis has involved simulation of structural and CFD analysis on three-dimensional model of microneedle array. The effect of axial and transverse loading on the microneedle during skin insertion is investigated in the stress analysis. The analysis predicts that the resultant stresses due to applied bending and axial loads are in the safe range below the yield strength of the material for the proposed design of the microneedles. In CFD analysis, fluid flow rate and pressure drop in the microneedles at applied inlet pressures are numerically and theoretically investigated. The CFD analysis predicts uniform flow through the microneedle array for each microneedle. Theoretical and numerical results for the flow rate and pressure drop are in close agreement with each other, thereby validating the CFD analysis. For the proposed design of microneedles, feasible fabrication techniques such as micro-hot embossing and ultraviolet excimer laser methods are proposed. The results of the present theoretical study provide valuable benchmark and prediction data to fabricate optimized designs of the polymeric, hollow microneedles, which can be successfully integrated with other microfluidic devices for TDD applications.
In this paper, we present design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedles with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) system for treatment of cardiovascular or hemodynamic disorders such as hypertension. The mask layout design and fabrication process of silicon microneedles and reservoir involving deep reactive ion etching (DRIE) is first presented. This is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of a MEMS based piezoelectrically actuated device with integrated silicon microneedles is presented. The coupledfield analysis of hollow silicon microneedle array integrated with piezoelectric micropump has involved structural and fluid field couplings in a sequential structural-fluid analysis on a three-dimensional model of the microfluidic device. The effect of voltage and frequency on silicon membrane deflection and flow rate through the microneedle is investigated in the coupled field analysis using multiple code coupling method. The results of the present study provide valuable benchmark and prediction data to fabricate optimized designs of the silicon hollow microneedle based microfluidic devices for transdermal drug delivery applications.
Nowadays, mobile robots work under the dynamic environments like manufacturing industries with machinery parts as moving objects and are using many techniques for navigation, obstacle avoidance, and localization. In this work we are using pioneer 2 DX mobile robot for experiments. This paper focuses on development of algorithms with the integration of path planning by potential field method and Monte Carlo localization method for navigation, obstacle avoidance, and localization of the mobile robot in a dynamic environment like in manufacturing industry. The path planning algorithms has divided into two submodules, one is global path planning which uses visibility graph with A* search method and another is local path planning which uses potential field method to avoid the obstacles. The image processing is used to get the working environment information from the global camera. The robot control program uses MCL algorithms with gradient path planning for continuous localization. User-friendly path planning software PMADE V 2.0 is developed. PMADE v 2.0 is used for image processing, path planning, simulation of robot navigation, real robot manual control and real robot automatic control for navigation in dynamic environment from position data of the simulator.Index Terms -Pioneer Mobile robot; path planning by potential field method;, Monte Carlo Localization; dynamic environment; PMADE V 2.0
Abstract-One of the major drawbacks of transdermal drug delivery (TDD) systems has been their inability to deliver the drugs through the skin at therapeutically desirable range. To overcome this limitation, use of microneedles is gaining popularity. In this paper, the use of microneedles has been proposed for the transdermal drug delivery applications. By using the processes developed by microelectronics industry, the hollow cylindrical silicon microneedles array has been fabricated with microneedles having the tapered tip for easy skin insertion. Mask layout design and fabrication steps involving deep reactive ion etching (DRIE) using silicon wafers is first presented. The process is followed by actual fabrication of silicon hollow microneedles by a series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. The performance of the microneedles is numerically characterized by using structural and coupled multifield analysis. To predict the stress distribution and model fluid flow in coupled multifield analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS has been used. Flow rate through the microneedles is investigated at different voltages and frequencies using multiple codes coupling method. The analysis of the flow behavior by coupled field method and structural characteristics provides useful data to fabricate optimized design of the hollow silicon microneedle based drug delivery device for transdermal drug delivery applications.Keywords-Computational fluid dynamic (CFD) analysis, Deep reactive ion etching (DRIE), Drug delivery, Hollow silicon microneedle, Transdermal drug delivery (TDD).
Cancer is one of the leading causes for human death. However, if cancer cells are identified at initial stage, patient treatment will be low cost and successful. This research presents the design and simulation of ascending curvilinear micro channel for separation of particles resembling cancer cells. The separation system is designed and simulated by using inertia focusing cell separation technique. Computational fluid dynamics (CFD) design and simulation of ascending micro channel for cell separation using inertial focusing technique is used for separation. The simulation was carried in two stages; for focusing and separation. The mixture flow velocities were 0.105 m/s, 115 m/s and 125 m/s, and with Reynolds number Re = 8.5, 9.25 and 10.06. The ascending curvilinear channel design demonstrated favorable focusing, and separation. 100% purity and 100 % efficiency for separation of 15 µm particles was achieved at Re = 8.50 and maximum output/input ratio at velocity 0.105m/s. Cancer cells are also of size about 15 µm and the our proposed micro channel is a good candidate for cancer cells separation from blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.