Road damage such as potholes and cracks may reduce ride comfort and traffic safety. This influence can be prevented by regular, proper monitoring and maintenance of roads. Traditional methods and existing methods of surveying are very time-consuming, expensive, require a lot of human effort, and, thus, cannot be conducted frequently. A more efficient and cost-effective process is required to augment profilometer and traditional road-condition recognition systems. In this study, we propose deep-learning methods using smartphone data to devise a cost-effective and ad-hoc approach. Information from sensors on smartphones such as motion sensors and cameras are harnessed to detect road damage using deep-learning algorithms. In order to give heuristic and accurate information about the road damage, we used a cloud-based collaborative approach to fuse all the data and update a map frequently with these road-surface conditions. During the experiment, the deep-learning models achieved good prediction accuracy on our dataset, and the cloud-based fusion approach was able to group and merge the detections from different vehicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.