Background Multiple studies describing human head finite element (FE) models have established the importance of including the major cerebral vasculature to improve the accuracy of the model predictions. However, a more detailed network of cerebral vasculature, including the major veins and arteries as well as their branch vessels, can further enhance the model-predicted biomechanical responses and help identify correlates to observed blunt-induced brain injury. Methods We used an anatomically accurate three-dimensional geometry of a 50th percentile U.S. male head that included the skin, eyes, sinuses, spine, skull, brain, meninges, and a detailed network of cerebral vasculature to develop a high-fidelity model. We performed blunt trauma simulations and determined the intracranial pressure (ICP), the relative displacement (RD), the von Mises stress, and the maximum principal strain. We validated our detailed-vasculature model by comparing the model-predicted ICP and RD values with experimental measurements. To quantify the influence of including a more comprehensive network of brain vessels, we compared the biomechanical responses of our detailed-vasculature model with those of a reduced-vasculature model and a no-vasculature model. Results For an inclined frontal impact, the predicted ICP matched well with the experimental results in the fossa, frontal, parietal, and occipital lobes, with peak-pressure differences ranging from 2.4% to 9.4%. For a normal frontal impact, the predicted ICP matched the experimental results in the frontal lobe and lateral ventricle, with peak-pressure discrepancies equivalent to 1.9% and 22.3%, respectively. For an offset parietal impact, the model-predicted RD matched well with the experimental measurements, with peak RD differences of 27% and 24% in the right and left cerebral hemispheres, respectively. Incorporating the detailed cerebral vasculature did not influence the ICP but redistributed the brain-tissue stresses and strains by as much as 30%. In addition, our detailed-vasculature model predicted strain reductions by as much as 28% when compared to current reduced-vasculature FE models that only include the major cerebral vessels. Conclusions Our study highlights the importance of including a detailed representation of the cerebral vasculature in FE models to more accurately estimate the biomechanical responses of the human brain to blunt impact.
In this study, we investigated how animal orientation within a shock tube influences the biomechanical responses of the brain and cerebral vasculature of a rat when exposed to a blast wave. Using three-dimensional finite-element models, we computed the biomechanical responses when the rat was exposed to the same blast-wave overpressure (100 kPa) in a prone (P), vertical (V), or head-only (HO) orientation. We validated our model by comparing the model-predicted and the experimentally measured brain pressures at the lateral ventricle. For all three orientations, the maximum difference between the predicted and measured pressures was 11%. Animal orientation markedly influenced the predicted peak pressure at the anterior position along the mid-sagittal plane of the brain (P = 187 kPa; V = 119 kPa; and HO = 142 kPa). However, the relative differences in the predicted peak pressure between the orientations decreased at the medial (21%) and posterior (7%) positions. In contrast to the pressure, the peak strain in the prone orientation relative to the other orientations at the anterior, medial, and posterior positions was 40-88% lower. Similarly, at these positions, the cerebral vasculature strain in the prone orientation was lower than the strain in the other orientations. These results show that animal orientation in a shock tube influences the biomechanical responses of the brain and the cerebral vasculature of the rat, strongly suggesting that a direct comparison of changes in brain tissue observed from animals exposed at different orientations can lead to incorrect conclusions.
A dynamic 3D CT technique of the upper airway is described that can be performed with a clinically reasonable radiation dose and sets a benchmark for future use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.