The design of polyvalent molecules, consisting of multiple copies of a biospecific ligand attached to a suitable scaffold, represents a promising approach to inhibit pathogens and oligomeric microbial toxins. Despite the increasing interest in structure-based drug design, few polyvalent inhibitors based on this approach have shown efficacy in vivo. Here we demonstrate the structure-based design of potent biospecific heptavalent inhibitors of anthrax lethal toxin. Specifically, we illustrate the ability to design potent polyvalent ligands by matching the pattern of binding sites on the biological target. We used a combination of experimental studies based on mutagenesis and computational docking studies to identify the binding site for an inhibitory peptide on the heptameric subunit of anthrax toxin. We developed an approach based on copper-catalyzed azide-alkyne cycloaddition (click-chemistry) to facilitate the attachment of seven copies of the inhibitory peptide to a β-cyclodextrin core via a polyethylene glycol linker of an appropriate length. The resulting heptavalent inhibitors neutralized anthrax lethal toxin both in vitro and in vivo and showed appreciable stability in serum. Given the inherent biocompatibility of cyclodextrin and polyethylene glycol, these potent well-defined heptavalent inhibitors show considerable promise as anthrax anti-toxins.
Porphyrins have been used for photodynamic therapy (PDT) against a wide range of targets like bacteria, viruses and tumor cells. In this work, we report porphyrin-conjugated multi-walled carbon nanotubes (NT-P) as potent antiviral agents. Specifically, we used Protoporphyrin IX (PPIX), which we attached to acid-functionalized multi-walled carbon nanotubes (MWNTs). We decided to use carbon nanotubes as scaffolds because of their ease of recovery from a solution through filtration. In the presence of visible light, NT-P was found to significantly reduce the ability of Influenza A virus to infect mammalian cells. NT-P may be used effectively against influenza viruses with little or no chance of them developing resistance to the treatment. Furthermore, NT-P can be easily recovered through filtration which offers a facile strategy to reuse the active porphyrin moiety to its fullest extent. Thus NT-P conjugates represent a new approach for preparing ex vivo reusable antiviral agents.
We report the design of antimicrobial nanocomposite films based on conjugates of multiwalled carbon nanotubes (MWNT) and protoporphyrin IX (PPIX) that are highly effective against Staphylococcus aureus (S. aureus) upon irradiation with visible light. S. aureus infections can lead to life-threatening situations, especially when caused by antibiotic-resistant strains. While the light-activated antimicrobial activity of porphyrins against such pathogens is wellknown, a facile way to incorporate porphyrins into coatings may lead to their more effective use. To that end, we decided to synthesize and characterize MWNT-PPIX conjugates which combine the biocidal capacity of porphyrins with the mechanical strength of MWNTs. The conjugates could effectively deactivate S. aureus cells in solution upon irradiation with visible light. We also designed large area nanocomposite films comprised of the MWNT-PPIX conjugates that showed potent antimicrobial activity. These MWNT-PPIX conjugates represent a facile strategy for the design of antimicrobial and antifouling coatings.
Light-triggered treatments in the presence of photosensitizer and oxygen molecule are prevalent for a wide variety of diseases. The reactive oxygen species (ROS), which are produced in the vicinity of malignant tissue by the light activated sensitizers, are considered as active agents in the photodynamic therapy (PDT). The higher reactivity of photosensitizers in nano state enhances the profile of pharmacokinetics and therapeutic index of the active molecule. In that direction, this review emphasises the application of porphyrin (Por) and phthalocyanine (PC) as nano photosensitizers in the development of antibacterial nanotherapeutic agents for resistant and non-resistant bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.