Arrhythmia is a condition in which the rhythm of heartbeat becomes irregular. This condition in extreme cases can lead to fatal heart attack accidents. In order to reduce heart attack risk, appropriate early treatments should be conducted right after getting results of Arrhythmia condition, which is generated by electrocardiography ECG tools. However, reading ECG results should be done by qualified medical staff in order to diagnose the existence of arrhythmia accurately. This paper proposes a deep learning algorithm method to classify and detect the existence of arrhythmia from ECG reading. Our proposed method relies on Convolutional Neural Network (CNN) to extract feature from a single lead ECG signal and also Gradient Boosting algorithm to predict the final outcome of single lead ECG reading. This method achieved the accuracy of 96.18% and minimized the number of parameters used in CNN Layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.