Large number of low power, tiny radio jammers are constituting a Distributed Jammer Network (DJN) is used nowadays to cause a Denial of Service (DoS) attack on a Distributed Wireless Network (DWN). Using NANO technologies, it is possible to build huge number of tiny jammers in millions, if not more. The Denial of Service (DoS) attacks in Distributed Wireless Network (DWN) using Distributed Jammer Network (DJN) considering each of them as separate Poisson Random Process. In an integrated approach, in this study, we advocate the more natural birth-death random process route to study the impact of Distributed Jammer Network (DJN) on the connectivity of Distributed Wireless Network (DWN). We express that the Distributed Jammer Network (DJN) can root a phase transition in the performance of the target network. We use Birth-Death Random Process (BDRP) route for this phase transition to evaluate the collision of Distributed Jammer Network (DJN) on the connectivity and global percolation of the target network. This study confirms the global percolation of Distributed Wireless Network (DWN) is definite when the Distributed Jammer Network (DJN) is not more significant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.