Every day the mass of information available, merely finding the relevant information is not the only task of automatic text classification systems. The main problem is to classify which documents are relevant and which are irrelevant. The Automated text classification consists of automatically organizing clustered data. We propose a method of automatic text classification using Convolutional Neural Network based on the disambiguation of the meaning of the word we use the WordNet ontology and word embedding algorithm to eliminate the ambiguity of words so that each word is replaced by its meaning in suitable context. The closest ancestors of the senses of all the words in a given document are selected as folders for the specified document.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.