Forkhead box transcription factor, FOXM1 is implicated in several cellular processes such as proliferation, cell cycle progression, cell differentiation, DNA damage repair, tissue homeostasis, angiogenesis, apoptosis, and redox signaling. In addition to being a boon for the normal functioning of a cell, FOXM1 turns out to be a bane by manifesting in several disease scenarios including cancer. It has been given an oncogenic status based on several evidences indicating its role in tumor development and progression. FOXM1 is highly expressed in several cancers and has also been implicated in poor prognosis. A comprehensive understanding of various aspects of this molecule has revealed its role in angiogenesis, invasion, migration, self- renewal and drug resistance. In this review, we attempt to understand various mechanisms underlying FOXM1 gene and protein regulation in cancer including the different signaling pathways, post-transcriptional and post-translational modifications. Identifying crucial molecules associated with these processes can aid in the development of potential pharmacological approaches to curb FOXM1 mediated tumorigenesis.
ObjectiveTo identify clinical and biochemical characteristics associated with 7- & 30-day mortality and intensive care admission amongst diabetes patients admitted with COVID-19.Research Design and MethodsWe conducted a cohort study collecting data from medical notes of hospitalised people with diabetes and COVID-19 in 7 hospitals within the Mersey-Cheshire region from 1 January to 30 June 2020. We also explored the impact on inpatient diabetes team resources. Univariate and multivariate logistic regression analyses were performed and optimised by splitting the dataset into a training, test, and validation sets, developing a robust predictive model for the primary outcome.ResultsWe analyzed data from 1004 diabetes patients (mean age 74.1 (± 12.6) years, predominantly men 60.7%). 45% belonged to the most deprived population quintile in the UK. Median BMI was 27.6 (IQR 23.9-32.4) kg/m2. The primary outcome (7-day mortality) occurred in 24%, increasing to 33% by day 30. Approximately one in ten patients required insulin infusion (9.8%). In univariate analyses, patients with type 2 diabetes had a higher risk of 7-day mortality [p < 0.05, OR 2.52 (1.06, 5.98)]. Patients requiring insulin infusion had a lower risk of death [p = 0.02, OR 0.5 (0.28, 0.9)]. CKD in younger patients (<70 years) had a greater risk of death [OR 2.74 (1.31-5.76)]. BMI, microvascular and macrovascular complications, HbA1c, and random non-fasting blood glucose on admission were not associated with mortality. On multivariate analysis, CRP and age remained associated with the primary outcome [OR 3.44 (2.17, 5.44)] allowing for a validated predictive model for death by day 7.ConclusionsHigher CRP and advanced age were associated with and predictive of death by day 7. However, BMI, presence of diabetes complications, and glycaemic control were not. A high proportion of these patients required insulin infusion warranting increased input from the inpatient diabetes teams.
Mutations in p53 gene are one of the hallmarks of tumor development. Specific targeting of mutant p53 protein has a promising role in cancer therapeutics. Our preliminary observation showed destabilization of mutant p53 protein in SW480, MiaPaCa and MDAMB231 cell lines upon thiostrepton treatment. In order to elucidate the mechanism of thiostrepton triggered mutant p53 degradation, we explored the impact of proteasome inhibition on activation of autophagy. Combined treatment of thiostrepton and cycloheximide/chloroquine prevented the degradation of mutant p53 protein, reinforcing autophagy as the means of mutant p53 destabilization. Our initial studies suggested that mutant p53 degradation post THSP treatment was carried out by BAG3 mediated autophagy, based on the evidence of BAG1 to BAG3 switching. Subsequent interactome analysis performed post thiostrepton treatment revealed an association of p53 with autophagosome complex associated proteins such as BAG3, p62 and HSC70. Reaccumulation of p53 was seen in BAG3 silenced cells treated with thiostrepton, thereby confirming the role of BAG3 in destabilization of this molecule. Further, localization of p53 into the lysosome upon THSP treatment substantiated our findings that mutant p53 was degraded by an autopahgic process.
The HNF1B gene plays an important role in endodermal development, and mutations of HNF1B are associated with the renal cysts and diabetes (RCAD) syndrome. Other than renal cystic malformations and monogenic diabetes, various other abnormalities have been described depending on HNF1β expression. Molecular diagnosis has huge implications for the treatment of the patient and their family members. We present a case of RCAD syndrome with a previously unreported mutation. A 49‐year‐old man with diabetes mellitus was admitted with worsening chronic kidney disease requiring haemodialysis. He developed recurrent, unexplained hypoglycaemia despite discontinuing insulin, making the diagnosis of type 1 diabetes mellitus questionable. He had detectable serum C‐peptide (742 pmol/L), and anti‐GAD and anti‐pancreatic islet cell antibodies were negative. Abdominal imaging revealed renal cortical cysts and atrophic pancreas. A significant family history of diabetes mellitus with renal disease was also established which prompted us to suspect mutation of the HNF1B gene. Genetic testing confirmed the diagnosis: he was found to have a novel HNF1B missense mutation p.R165C previously not reported. This case study identified a mutation previously unreported thereby expanding the spectrum of HNF1B gene mutations. Copyright © 2017 John Wiley & Sons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.