Doxorubicin (DOX) is a well-known and effective antineoplastic agent of the anthracycline family. But, multiple organ toxicities compromise its invaluable therapeutic usage. Among many toxicity types, nephrotoxicity is one of the major concerns. In recent years many approaches, including bioactive agents of natural origin, have been explored to provide protective effects against chemotherapy-related complications. α-Bisabolol is a naturally occurring monocyclic sesquiterpene alcohol identified in the essential oils of various aromatic plants and possesses a wide range of pharmacological properties such as antioxidant, anti-inflammatory, analgesic, cardioprotective, antibiotic, anti-irritant, and anticancer activities. The present study aimed to evaluate the effects of α-Bisabolol on DOX-induced nephrotoxicity in Wistar male albino rats. Nephrotoxicity was induced in rats by injecting a single dose of DOX (12.5 mg/kg, i.p.), and the test compound, α-Bisabolol (25 mg/kg) was administered intraperitoneally along with DOX as a co-treatment daily for 5 days. DOX-injected rats showed reduction in body weight along with a concomitant fall in antioxidants and increased lipid peroxidation in the kidney. DOX-injection also increased levels/expressions of proinflammatory cytokines namely tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and inflammatory mediators like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and activated nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinases (MAPK) signaling in the kidney tissues. DOX also triggered apoptotic cell death, evidenced by the increased expression of pro-apoptotic markers like BCL2-Associated X Protein (Bax), cleaved caspase-3, caspase- 9, and cytochrome-C) and a decrease in the expressions of anti-apoptotic markers namely B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra large (Bcl-xL) in the kidney. These biochemical alterations were additionally supported by light microscopic findings, which revealed structural alterations in the kidney. However, treatment with α-Bisabolol prevented body weight loss, restored antioxidants, mitigated lipid peroxidation, and inhibited the rise in proinflammatory cytokines, as well as favorably modulated the expressions of NF-κB/MAPK signaling and apoptosis markers in DOX-induced nephrotoxicity. Based on the results observed, it can be concluded that α-Bisabolol has potential to attenuate DOX-induced nephrotoxicity by inhibiting oxidative stress and inflammation mediated activation of NF-κB/MAPK signaling alongwith intrinsic pathway of apoptosis in rats. The study findings are suggestive of protective potential of α-Bisabolol in DOX associated nephrotoxicity and this could be potentially useful in minimizing the adverse effects of DOX and may be a potential agent or adjuvant for renal protection.
Biguanides (metformin, buformin and phenformin) have been developed for oral treatment of non-insulindependent diabetes mellitus. Metformin, the drug of choice in this class, controls blood glucose primarily by lowering hepatic gluconeogenesis (e.g., decreasing glucagon-mediated hepatic glucose output). Its mode-of-action, however, is more complex and may involve "refining" cellular bioenergetics (improving energy efficiency) in various cell types including myocytes. Buformin and phenformin presumably have similar mechanisms of action. The main purpose of this in vitro study was to assess the effects of these drugs on bioenergetics-cellular respiration (mitochondrial O 2 consumption) and ATP content-in tissue fragments from the heart muscle (cardiomyocytes) and liver (hepatocytes) of C57BL/6 mice. Cardiomyocyte respiration decreased by 10-26% in the presence of 100 µM metformin (p=0.093), buformin (p=0.028) or phenformin (p=0.015). Similar effects on cardiomyocyte respiration were noted with 1.0 mM drugs. Cardiomyocyte ATP, on the other hand, increased by 17-31% in the presence of 100 µM metformin (p=0.093), buformin (p=0.445) or phenformin (p=0.093). Hepatocyte respiration and ATP decreased by 11-26% and 8-25%, respectively in the presence of 1.0 mM drugs. Decreased respiration and ATP were also noted in hepatocytes exposed to 100 µM metformin for 1 ≤ t ≤ 6 hours (13% and 5%, respectively). Thus, the effects of biguanides on cardiomyocyte bioenergetics differed from that on hepatocyte bioenergetics. These findings suggest that biguanides regulate cardiomyocyte energy conversion, favoring better fuel efficiency (↓respiration/↑ATP). The drug effects in hepatocyte are ↓respiration/↓ATP, favoring less fuel production (↓hepatic gluconeogenesis). Biguanide activities in various tissues may be coupled.
The present study investigated the effects of α-bisabolol on DOX-induced testicular damage in rats. Testicular damage was induced in rats by injecting DOX (12.5 mg/kg, i.p., single dose) into rats. α-Bisabolol (25 mg/kg, i.p.) was administered to the rats along with DOX pre- and co-treatment daily for a period of 5 days. DOX-injected rats showed a decrease in absolute testicular weight and relative testicular weight ratio along with concomitant changes in the levels/expression levels of oxidative stress markers and Nrf2 expression levels in the testis. DOX injection also triggered the activation of NF-κB/MAPK signaling and increased levels/expression levels of pro-inflammatory cytokines (TNF-α, IL-6, and IL-1β) and inflammatory mediators (iNOS and COX-2) in the testis. DOX triggered apoptosis, manifested by an increment in the expression levels of pro-apoptotic markers (Bax, Bcl2, cleaved caspase-3 and -9, and cytochrome-C) and a decline in the expression levels of anti-apoptotic markers (Bcl-xL and Bcl2) in the testis. Additionally, light microscopy revealed the changes in testicular architecture. α-Bisabolol rescued alterations in the testicular weight; restored all biochemical markers; modulated the expression levels of Nrf2-mediated antioxidant responses, NF-κB/MAPK signaling, endoplasmic reticulum (ER) stress, and apoptosis markers in DOX-injected testicular toxicity in rats. Based on our findings, it can be concluded that α-bisabolol has the potential to attenuate DOX-induced testicular injury by modifying NF-κB/MAPK signaling and the ER-stress-mediated mitochondrial pathway of apoptosis by invoking Nrf2-dependent antioxidant defense systems in rats. Based on the findings of the present study, α-bisabolol could be suggested for use as an agent or adjuvant with chemotherapeutic drugs to attenuate their deleterious effects of DOX on many organs including the testis. However, further regulatory toxicology and preclinical studies are necessary before making recommendations in clinical tests.
Chronic hyperglycemia-induced advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) following activation results in the oxidative stress, inflammasome activation, and tissue fibrosis and plays important role in the development and progression of diabetic cardiomyopathy (DCM). Provided the emerging role of cannabinoid type 2 receptors (CB2) in diabetes and its complications, the present study aimed to investigate the role of CB2 receptor activation in murine model of DCM by its agonist b-caryophyllene (BCP), a dietary phytocannabinoid. The study also investigated underlying signaling pathways. The experimental murine model of DCM was induced by feeding high fat diet (45% fat) for four weeks in addition to single intraperitoneal injection of streptozotocin (100 mg/kg/body weight). Following the development of diabetes, animals were orally treated with BCP (50 mg/kg/body weight) for 12 weeks. In one group to demonstrate CB2 receptor specific properties of BCP, AM630 (1.5 mg/kg), a specific CB2 receptor antagonist, was given 30 min prior to BCP treatment. At the end of the experiments, metabolic, histopathological, immunohistochemical, electron microscopic and western blotting were performed to evaluate efficacy and demonstrate mechanism. The results revealed that treatment with BCP significantly improved glucose tolerance, enhanced serum insulin level along with reducing insulin resistance. BCP restored phosphorylation of cardiac contractile protein troponin I. BCP was observed to enhance PI3K/AKT phosphorylation, reduce expression of Keap1 which upregulated antioxidant enzymes (HO1, SOD2) mediated by stimulation of Nrf2 signaling. The AGE-RAGE signaling pathway in the heart of DCM mice was significantly mitigated by BCP treatment evidenced by reduced expression of AGEs, RAGE and NOX4. Additionally, NLRP3 inflammasome activation was downregulated and expression of ASC, pro-caspase1 was significantly reduced which further decreased IL-1b and IL-18 expression. The H&E, Masson's trichome, and transmission electron microscopy results further supported the finding that BCP mitigated cardiac hypertrophy, collagen deposition, myofilament disarrangement, mitochondrial disruption, thickened capillary basement membrane, and increased nuclear membrane invaginations. Furthermore, BCP suppressed endothelial-to-mesenchymal transition (EndMT) in DCM mice hearts revealed by decreased expression levels of fibroblast markers (a-SMA, vimentin, and collagen I) and increased expression levels of endothelial markers (CD31 and VE-cadherin). Interestingly, pre-administration of AM630 abrogated the positive effects of BCP in DCM mice. Collectively, these results demonstrate that inhibition of AGE/RAGE by BCP treatment to DCM mice rescues against diabetes associated complications by reducing oxidative damage, fibrosis, and inflammasome activation attributed to upregulation of PI3K/AKT/Nrf2 signaling, repression of EndMT transition, and inhibition of NLRP3 inflammasome activation in a CB2 receptor dependent m...
Sirolimus (SRL) is widely used as an immunosuppressant to prevent graft rejection, despite the risk of impairing glucose metabolism. Metformin (MET) can reduce the detrimental effects of SRL in many patients, including diabetes and renal transplant recipients. Limited in vivo studies have reported on SRL and MET therapy, particularly in relation to cellular bioenergetics, glucose metabolism, and insulin resistance. Herein, we investigated the efficacy of SRL and MET co-treatment in BALB/c mice over 4 weeks. Balb/c mice (4–6 weeks old) were divided into four groups and injected intraperitoneally (i.p.) with water (control, CTRL), MET (200 µg/g), SRL (5 µg/g), or MET (200 µg/g) +SRL (5 µg/g) over a period of one month. We evaluated the body weight, food consumption rate, random blood glucose (BG), insulin levels, serum biochemistry parameters (ALT, Albumin, BUN, Creatinine), and histomorphology in all groups using standardized techniques and assays. All drug-treated groups showed a statistically significant decrease in weight gain compared to the CTRL group, despite normal food intake. Treatment with SRL caused elevated BG and insulin levels, which were restored with SRL + MET combination. Serum biochemical parameters were within the normal range in all the studied groups. SRL+ MET co-treatment decreased liver cellular respiration and increased cellular ATP levels in the liver. In the pancreas, co-treatment resulted in increased cellular respiration and decreased cellular ATP levels. Liver and pancreatic histology were unchanged in all groups. This study showed that co-treatment of SRL with MET alleviates hyperglycemia induced by SRL without any deleterious effects. These results provide initial insights into the potential use of SRL + MET therapy in various settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.