Dye sensitized solar cells (DSSCs) were fabricated using silver doped ZnO films deposited on ITO glass by spin coating method. The crystalline nature of ZnO films was analysed with XRD and SEM technique was used for morphological studies. The XRD pattern confirmed the presence of single phase hexagonal wurtzite ZnO structure, without the presence of secondary phase. The crystallite size of ZnO decreased from 31 nm to 25 nm with increase in doping to 1.5 mol% of silver. The UV-visible transmission of the prepared ZnO film was found to be 70-90% and it decreased with increase in doping to 0.5 mol% Ag and increased in the film doped with 1.5 mol% Ag. The band gap values of the ZnO films with 0, 0.5 and 1.5 mol% of silver, determined from Tauc plot, were 3.269, 3.235 and 3.257 eV, respectively. The absorbance peaks of the N719 dye loaded ZnO films were obtained at the wavelengths 310, 350 and 538 nm. The N719 dye loaded ZnO film doped with 0.5 mol% Ag has the highest absorbance in the visible region as compared to other two samples. The fill factor values of the pure and ZnO doped with 0.5 and 1.5 mol% Ag were 0.47, 0.48 and 0.42, respectively. The short circuit density values for ZnO, ZnO:Ag0.5% and ZnO:Ag1.5% were found to be 1.50, 1.55 and 1.15 A•m/cm 2 , respectively. The calculated photon to electron efficiencies for the ZnO films with 0, 0.5 and 1.5 mol% of silver were 0.42%, 0.44% and 0.27%, respectively. Consequently future prospective of such type of dopants in ZnO film based dye sensitized solar cells seems to be bright.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.