Newly synthesized photolabile derivatives of glutamate, caged glutamate, that release free glutamate on a microsecond time scale after a pulse of UV laser light are described. 2-Nitrobenzyl derivatives were attached to the amino or carboxyl groups of glutamate. Substitution with a -COj group at the benzylic carbon accelerates the photolysis reaction when compared to -H and -CH3 substituents. y-O-(aCarboxy-2.nitrobenzyl)glutamate is stable at neutral pH. In 100 mM phosphate buffer at pH 7.0, the compound is photolyzed at 308 nm with a quantum product yield of 0.14.
The gamma-aminobutyric acid (GABA) receptor is an abundant neuronal receptor in the mammalian and invertebrate nervous systems and is associated with an inhibitory chloride ion channel. GABA is the endogenous neurotransmitter for the receptor and can trigger both fast activation and a reversible desensitization of the receptor. A series of photolabile amine-linked o-nitrobenzyl derivatives of GABA were synthesized that photolyze rapidly to release free GABA. The photochemical properties of the GABA precursors were determined; the compounds undergo rapid photolysis, initiated with UV irradiation at 308 nm, and release free GABA on a millisecond time scale. The pH of the photolysis medium affects both the quantum yield and the rate of photolysis. For example, the quantum yield observed for N-(alpha-carboxy-2-nitrobenzyl)-gamma-aminobutyric acid increases from 0.06 at pH 5.0 to 0.1 at pH 10.5, and the half-life for the photolytic reaction decreases from 1.0 to 2.5 ms in the same pH range. Photolysis of the compounds induces rapid onset of transmembrane ion currents in mouse cortical neurons. The potential of the new compounds for use in rapid chemical kinetic investigations of the neuronal GABA receptor is demonstrated.
Three photolabile precursors of glycine containing a photosensitive 2-nitrobenzyl moiety attached to the amino group have been synthesized. When exposed to ultraviolet radiation between 308 and 350 nm, the compounds photolyze to release glycine, an important inhibitory neurotransmitter in the central nervous system. The identification of glycine as a photolysis product was determined by two different methods: separation of the photolyzed sample by thin-layer chromatography followed by a reaction with ninhydrin, and recognition of derivatized glycine using the Waters pico-tag method in conjunction with high-performance liquid chromatography. The photolysis of these compounds at 22 degrees C has been investigated, and the rate of decay of a transient intermediate in the reaction, which is assumed to reflect product release, has been measured. For N-(alpha-carboxy-2-nitrobenzyl)glycine this decay rate was found to be 940 s-1 at pH 6.8 and 600 s-1 at pH 7.5. Additionally, this compound was found to exhibit biological activity upon photolysis; cultured mouse spinal cord cells containing neuronal glycine receptors were used to detect the glycine liberation. The approach adopted here is useful in demonstrating the utility of photolabile precursors of neurotransmitters that have the protecting group linked to the neurotransmitter through the amino group. The rapid photolysis of such compounds to release free neurotransmitter is valuable in gaining access to chemical kinetic studies of neurotransmitter receptors. Previously, such studies have been limited because the available methods for neurotransmitter delivery did not give a sufficiently high time resolution.
A series of photolabile o-nitrobenzyl derivatives of serotonin (caged serotonin) were synthesized: the amine-linked serotonin derivatives N-(2-nitrobenzyl) serotonin (Bz-5HT) and N-(alpha-carboxy-2-nitrobenzyl) serotonin (N-CNB-5HT), and O-alpha-carboxy-2-nitrobenzyl) serotonin (O-CNB-5HT), which has the caging group attached to the phenolic OH group. All the derivatives released free serotonin when excited by 308-nm or 337-nm laser pulses. The time constant of serotonin release from N-CNB-5HT was 1. 2 ms, with a quantum yield of 0.08. This is too slow for rapid chemical kinetic measurements. O-CNB-5HT is suitable for transient kinetic investigations of the serotonin 5-HT(3) receptor. It released serotonin with a time constant of 16 micros and a quantum yield of 0.03. The biological properties of O-CNB-5HT were evaluated, and the applicability of the compound for kinetic studies of the 5-HT(3) receptor was demonstrated. O-CNB-5HT does not activate the 5-HT(3) receptor by itself, nor does it modulate the response of a cell when co-applied with serotonin. When irradiated with a 337-nm laser pulse, O-CNB-5HT released free serotonin that evoked 5-HT(3) receptor-mediated whole-cell currents in NIE-115 mouse neuroblastoma cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.