The effects of pore size on the performance of ultrafiltration membranes are fairly well understood, but there is currently no information on the impact of pore geometry on the trade-off between the selectivity and permeability for membranes with pore size below 100 nm. Experimental data are presented for both commercial ultrafiltration membranes and for novel silicon membranes having slit-shaped nanopores of uniform size fabricated by photolithography using a sacrificial oxide technique. Data are compared with theoretical calculations based on available hydrodynamic models for solute and solvent transport through membranes composed of a parallel array of either cylindrical or slit-shaped pores. The results clearly demonstrate that membranes with slit-shaped pores have higher performance, i.e., greater selectivity at a given value of the permeability, than membranes with cylindrical pores. Theoretical calculations indicate that this improved performance becomes much less pronounced as the breadth of the pore size distribution increases. These results provide new insights into the effects of pore geometry on the performance of ultrafiltration membranes
Protein A chromatography is widely employed for the capture and purification of monoclonal antibodies (mAbs). Because of the high cost of protein A resins, there is a significant economic driving force to seek new downstream processing strategies. Membrane chromatography has emerged as a promising alternative to conventional resin based column chromatography. However, to date, the application has been limited to mostly ion exchange flow through (FT) mode. Recently, significant advances in Natrix hydrogel membrane has resulted in increased dynamic binding capacities for proteins, which makes membrane chromatography much more attractive for bind/elute operations. The dominantly advective mass transport property of the hydrogel membrane has also enabled Natrix membrane to be run at faster volumetric flow rates with high dynamic binding capacities. In this work, the potential of using Natrix weak cation exchange membrane as a mAb capture step is assessed. A series of cycle studies was also performed in the pilot scale device (> 30 cycles) with good reproducibility in terms of yield and product purities, suggesting potential for improved manufacturing flexibility and productivity. In addition, anion exchange (AEX) hydrogel membranes were also evaluated with multiple mAb programs in FT mode. Significantly higher binding capacity for impurities (support mAb loads up to 10Kg/L) and 40X faster processing speed were observed compared with traditional AEX column chromatography. A proposed protein A free mAb purification process platform could meet the demand of a downstream purification process with high purity, yield, and throughput.
The present work describes the possibility of using pervaporation to recover the tea aroma compounds from tea aroma condensate generated in the manufacturing of tea or instant tea, as well as directly from tea extract. Eight compounds that make a significant contribution to tea aroma, namely, trans-2-hexenal, linalool, cis-3-hexenol, 3-methylbutanal, 2-methylpropanal, benzyl alcohol, phenylacetaldehyde, and β-ionone, were studied in this work. Permeation studies for all of these compounds with poly(octyl methyl siloxane) (POMS) and poly(dimethylsiloxane) (PDMS) membranes in a batch-type vacuum pervaporation system were carried out, first, in their aqueous solutions (binary mixtures); second, in a model solution containing all of the abovementioned compounds; and last, with an actual tea extract. In this work, mainly the effect of the feed concentration on the organic flux and separation factor was studied. The permeation studies with the mixture revealed that β-ionone, trans-2-hexenal, linalool, cis-3-hexenol, and 3-methylbutanal offered very good selectivity, whereas phenylacetaldehyde, 2-methylpropanal, and benzyl alcohol gave moderate selectivity. The results indicate that pervaporation is an attractive technology for the recovery of tea aroma compounds from tea aroma condensate as it (i) yields good separation and (ii) operates under mild conditions. However, it should be noted that, because the selectivity offered by pervaporation varies considerably from compound to compound, attempts to concentrate a solution of volatiles to a high degree can result in significant alteration in the profile of the aroma. Thus, the commercial utility of this approach will need to be ascertained on a case-by-case basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.