Future embedded systems and services will be seamlessly connected and will interact on all levels with the infrastructure and cloud. For safety-critical applications this means that it is not sufficient to ensure dependability in a single embedded system, but it is necessary to cover the complete service chain including all involved embedded systems as well as involved services running in the edge or the cloud. However, for the development of such Cyber-Physical Systems-of-Systems (CP-SoS) engineers must consider all kinds of dependability requirements. For example, it is not an option to ensure safety by impeding reliability or availability requirements. In fact, it is the engineers' task to optimize the CPSoS' performance without violating any safety goals. In this paper, we identify the main challenges of developing CPSoS based on several industrial use cases and present our novel approach for designing cloud-based safety-critical applications with optimized performance by the example of an automated valet parking system. The evaluation shows that our monitoring and recovery solution ensures a superior performance in comparison to current methods, while meeting the system's safety demands in case of connectivity-related faults.
Web protocols are critical factor in successful implementation of web based industrial applications. Nevertheless, the main issue that significantly affects the real-time performance of such application is Web latency. Traditional web communication technologies, such as HTTP1.1, provide a uni-directional link and a request/response message exchange model. This solution is not feasible in web based applications involving large number of different interconnected devices, such as Industrial Internet of things. In this paper, we focus on bi-directional web protocols WebSocket, WebRTC and HTTP/2.0. We compare the performance parameters like latency, reliability, and security of these three protocols. At the end of this paper, we will present some suggestions how to optimize the usage of web protocols in industrial process automation applications. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.