Peroxisome proliferator-activated receptor α (PPARα) is an important regulator of hepatic lipid metabolism which functions through ligand binding. Despite high amino acid sequence identity (>90%), marked differences in PPARα ligand binding, activation and gene regulation have been noted across species. Similar to previous observations with synthetic agonists, we have recently reported differences in ligand affinities and extent of activation between human PPARα (hPPARα) and mouse PPARα (mPPARα) in response to long chain fatty acids (LCFA). The present study was aimed to determine if structural alterations could account for these differences. The binding of PPARα to LCFA was examined through in silico molecular modeling and docking simulations. Modeling suggested that variances at amino acid position 272 are likely to be responsible for differences in saturated LCFA binding to hPPARα and mPPARα. To confirm these results experimentally, LCFA binding, circular dichroism, and transactivation studies were performed using a F272I mutant form of mPPARα. Experimental data correlated with in silico docking simulations, further confirming the importance of amino acid 272 in LCFA binding. Although the driving force for evolution of species differences at this position are yet unidentified, this study enhances our understanding of ligand-induced regulation by PPARα and demonstrates the efficacy of molecular modeling and docking simulations.
Sarin is a toxic organophosphorus (OP) nerve agent that has been reported to cause long-term alterations in behavioral and neuropsychological processes. The present study was designed to investigate the effect of low dose sarin exposure on the monoamine neurotransmitter systems in various brain regions of mice. The rationale was to expand our knowledge about the noncholinergic neurochemical alterations associated with low dose exposure to this cholinesterase inhibitor. We analyzed the levels of monoamines and their metabolites in different brain areas after exposure of male C57BL/6 mice to a subclinical dose of sarin (0.4 LD50). Mice did not show any signs of cholinergic toxicity or pathological changes in brain tissue. At 1, 4 and 8 weeks post-sarin exposure brains were collected for neurochemical analysis. A significant decrease in the dopamine (DA) turnover, as measured by the metabolite to parent ratio, was observed in the frontal cerebral cortex (FC) at all time points tested. DA turnover was significantly increased in the amygdala at 4 weeks but not at 1 or 8 weeks after exposure. The caudate nucleus displayed a decrease in DA turnover at 1 week but no significant change was observed at 4 and 8 weeks suggesting a reversible effect. In addition to this, serotonin (5-HT) levels were transiently altered at various time points in all the brain regions studied (increase in FC, caudate nucleus and decrease in amygdala). Since there were no signs of cholinergic toxicity or cell death after sarin exposure, different non-cholinergic mechanisms may be involved in regulating these effects. Our results demonstrate that non-symptomatic dose of OP nerve agent sarin has potent long-term, region-specific effects on the monoaminergic neurotransmitter systems. Data also suggests differential effects of sarin on the various DA projections. These neurochemical alterations could be associated with long term behavioral and neuropsychological changes associated with low dose OP exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.