This article presents a data-driven method of pattern identification for in-situ monitoring of fatigue damage in polycrystalline alloys that are commonly used in aerospace structures. The concept is built upon analytic signal space partitioning of ultrasonic data sequences for symbolic dynamic filtering of the underlying information. The statistical patterns of evolving damage are generated for real-time monitoring of the possible structural degradation under fatigue load. The proposed method is capable of detecting small anomalies (i.e. deviations from the nominal condition) in the material microstructure and thereby generating early warnings on damage initiation. The damage monitoring algorithm has been validated on time series data of ultrasonic sensors from a fatigue test apparatus, where the behavioural pattern changes accrue because of the evolving fatigue damage in polycrystalline alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.