Transition metal perovskite chalcogenides are a new class of versatile semiconductors with high absorption coefficient and luminescence efficiency. Polycrystalline materials synthesized by an iodine-catalyzed solid-state reaction show distinctive optical colors and tunable bandgaps across the visible range in photoluminescence, with one of the materials' external efficiency approaching the level of single-crystal InP and CdSe.
Neuromorphic or "brain-like" computation is a leading candidate for efficient, fault-tolerant processing of large-scale data as well as real-time sensing and transduction of complex multivariate systems and networks such as self-driving vehicles or Internet of Things applications. In biology, the synapse serves as an active memory unit in the neural system and is the component responsible for learning and memory. Electronically emulating this element via a compact, scalable technology which can be integrated in a three-dimensional (3-D) architecture is critical for future implementations of neuromorphic processors. However, present day 3-D transistor implementations of synapses are typically based on low-mobility semiconductor channels or technologies that are not scalable. Here, we demonstrate a crystalline indium phosphide (InP)-based artificial synapse for spiking neural networks that exhibits elasticity, short-term plasticity, long-term plasticity, metaplasticity, and spike timing-dependent plasticity, emulating the critical behaviors exhibited by biological synapses. Critically, we show that this crystalline InP device can be directly integrated via back-end processing on a Si wafer using a SiO buffer without the need for a crystalline seed, enabling neuromorphic devices that can be implemented in a scalable and 3-D architecture. Specifically, the device is a crystalline InP channel field-effect transistor that interacts with neuron spikes by modification of the population of filled traps in the MOS structure itself. Unlike other transistor-based implementations, we show that it is possible to mimic these biological functions without the use of external factors (e.g., surface adsorption of gas molecules) and without the need for the high electric fields necessary for traditional flash-based implementations. Finally, when exposed to neuronal spikes with a waveform similar to that observed in the brain, these devices exhibit the ability to learn without the need for any external potentiating/depressing circuits, mimicking the biological process of Hebbian learning.
Transition metal perovskite chalcogenides (TMPCs) are explored as stable, environmentally friendly semiconductors for solar energy conversion. They can be viewed as the inorganic alternatives to hybrid halide perovskites, and chalcogenide counterparts of perovskite oxides with desirable optoelectronic properties in the visible -infrared part of the electromagnetic spectrum. Past theoretical studies have predicted large absorption coefficient, desirable defect characteristics, and bulk photovoltaic effect in TMPCs. Despite recent progresses in polycrystalline synthesis and measurements of their optical properties, it is necessary to grow these materials in high crystalline quality to develop a fundamental understanding of their optical properties and evaluate their suitability for photovoltaic application. Here, we report the growth of single crystals of a two-dimensional (2D) perovskite chalcogenide, Ba 3 Zr 2 S 7 , with a natural superlattice-like structure of alternating double-layer perovskite blocks and single-layer rock salt structure. The material demonstrated a bright photoluminescence peak at 1.28 eV with a large external luminescence efficiency of up to 0.15%. We performed time-resolved photoluminescence spectroscopy on these crystals and obtained an effective recombination time of ~65 ns. These results clearly show that 2D Ruddlesden-Popper phases of perovskite chalcogenides are promising materials to achieve single-junction solar cells.
We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS) to trap and assemble 200 nm diameter gold nanoparticles. We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. Unlike our previous demonstration of LATS with polystyrene particles, we find that the interparticle interactions play a significant role in the resulting particle patterns. Despite a two-dimensionally periodic intensity profile in the slab, the particles form one-dimensional chains whose orientations can be controlled by the incident polarization of the light. The formation of chains can be understood in terms of a competition between the gradient force due to the excitation of the mode in the slab and optical binding between particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.