The Poincaré-Hopf relation is studied for molecular electrostatic potentials (MESPs) of a few test systems such as cyclopropane, cyclobutane, pyridine, and benzene. Appropriate spheres centered at various points, including the center of mass of the system under study, are constructed and the MESP gradient is evaluated on the corresponding spherical grid. The change in directional nature of MESP gradient on the surface of these spheres gives indication of the critical points of the function. This is used for developing a method for locating the critical points of MESP. The strategy also enables a general definition of the Euler characteristic (EC) of the molecule, independent of any region or space. Further, the effect of basis set and level of theory on the EC is discussed.
The recognition of interaction between two molecules is analysed via the topography of their molecular electrostatic potentials (MESP). The point of recognition between two species is proposed to be the geometry at which there is a change in the nature of the set of MESP critical points of one of the molecules vis-a-vis with its MESP topography at infinite separation. These results are presented for certain model systems such as pyridine and benzene dimers, cytosine-guanine and adenine-thymine base pairs in various orientations of approach of the two species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.