SummaryMembrane scission is essential for intracellular trafficking. While BAR domain proteins such as endophilin have been reported in dynamin-independent scission of tubular membrane necks, the cutting mechanism has yet to be deciphered. Here, we combine a theoretical model, in vitro, and in vivo experiments revealing how protein scaffolds may cut tubular membranes. We demonstrate that the protein scaffold bound to the underlying tube creates a frictional barrier for lipid diffusion; tube elongation thus builds local membrane tension until the membrane undergoes scission through lysis. We call this mechanism friction-driven scission (FDS). In cells, motors pull tubes, particularly during endocytosis. Through reconstitution, we show that motors not only can pull out and extend protein-scaffolded tubes but also can cut them by FDS. FDS is generic, operating even in the absence of amphipathic helices in the BAR domain, and could in principle apply to any high-friction protein and membrane assembly.
The encapsulation of molecular cargo within well-defined supramolecular architectures is highly challenging. Synthetic hosts are desirable because of their well-defined nature and addressability. Encapsulation of biomacromolecules within synthetic hosts is especially challenging because of the former's large size, sensitive nature, retention of functionality postencapsulation and demonstration of control over the cargo. Here we encapsulate a fluorescent biopolymer that functions as a pH reporter within synthetic, DNA-based icosahedral host without molecular recognition between host and cargo. Only those cells bearing receptors for the DNA casing of the host-cargo complex engulf it. We show that the encapsulated cargo is therefore uptaken cell specifically in Caenorhabditis elegans. Retention of functionality of the encapsulated cargo is quantitatively demonstrated by spatially mapping pH changes associated with endosomal maturation within the coelomocytes of C. elegans. This is the first demonstration of functionality and emergent behaviour of a synthetic host-cargo complex in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.