Abstract. The annual and seasonal variability of aerosol optical properties observed by means of a Raman lidar over Northeastern Spain has been assessed. The lidar representativeness has first been checked against sun-photometer measurements in terms of aerosol optical thickness. Then the annual cycle and the seasonal variability of the planetary boundary layer aerosol optical thickness and its fraction compared to the columnar optical thickness, the lidar ratio, the backscatter-relatedÅngström exponent and the planetary boundary layer height are analyzed and discussed. Winter and summer mean profiles of extinction, backscatter and lidar ratio retrieved with the Raman algorithm are presented. The analysis shows the impact of most of the natural events (Saharan dust intrusions, wildfires, etc.) and meteorological situations (summer anticyclonic situation, the formation of the Iberian thermal low, winter long-range transport from North Europe and/or North America, re-circulation flows, etc.) occurring in the Barcelona area. A detailed study of a special event including a combined intrusion of Saharan dust and biomass-burning particles proves the suitability of combining the retrieval of aerosol optical properties from Raman and pure elastic lidar measurements to discriminate spatially different types of aerosols and to follow their spatial and temporal evolution.
Abstract. This paper introduces the recent European AerosolResearch Lidar Network (EARLINET) quality-assurance efforts at instrument level. Within two dedicated campaigns and five single-site intercomparison activities, 21 EAR-LINET systems from 18 EARLINET stations were intercompared between 2009 and 2013. A comprehensive strategy for campaign setup and data evaluation has been established. Eleven systems from nine EARLINET stations participated in the EARLINET Lidar Intercomparison 2009 (EARLI09). In this campaign, three reference systems were qualified which served as traveling standards thereafter. EARLINET systems from nine other stations have been compared against these reference systems since 2009. We present and discuss comparisons at signal and at product level from all campaigns for more than 100 individual measurement channels at the wavelengths of 355, 387, 532, and 607 nm. It is shown that in most cases, a very good agreement of the compared systems with the respective reference is obtained. Mean signal deviations in predefined height ranges are typically below ±2 %. Particle backscatter and extinction coefficients agree within ±2 × 10 −4 km −1 sr −1 and ± 0.01 km −1 , respectively, in most cases. For systems or channels that showed larger discrepancies, an in-depth analysis of deficiencies was performed and technical solutions and upgrades were proposed and realized. The intercomparisons have reinforced confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements for some instruments and to identify major challenges that need to be tackled in the future.
[1] Ground-level enhancements (GLEs) are sudden, sharp, and short-lived increases in cosmic ray intensities registered by neutron monitors. These enhancements are known to take place during powerful solar eruptions. In the present investigation, the cosmic ray intensities registered by the Oulu neutron monitor have been studied for the period between January 1979 and July 2009. Over this span of time, increase rates of 32 GLEs have been deduced. In addition, we have studied characteristics of the 32 event-associated solar flares, coronal mass ejections (CMEs), and solar energetic particle (SEP) fluxes. We found that all of the 32 GLEs were associated with solar flares, CMEs, and SEP fluxes. Approximately 82% of the events were associated with X-class flares. Most of the flares that were associated with GLEs of increase rates >10% originated from the active regions located on the southwest hemisphere of the Sun. The average speed (1726.17 km/s) of GLE-associated CMEs was much faster than the average speed (423.39 km/s) of non-GLE-associated CMEs. It also became evident that ∼67% GLEs were associated with very fast (>1500 km/s) CMEs. Although a GLE event is often associated with a fast CME, this alone does not necessarily cause the enhancement. Solar flares with strong optical signatures may sometimes cause GLE. High SEP fluxes often seem to be responsible for causing GLEs as the correlation with SEP fluxes implies.
A 6-channel dichroic-based polychromator is presented as the spectrally selective unit for the U.P.C. elastic/Raman lidar. Light emission is made at UV), VIS) and 1064-nm (near infrared, NIR) wavelengths. In reception, the polychromator is the spectral separation unit that separates the laser backscattered composite return into 3 elastic (355, 532, 1064-nm wavelengths) and 3 Raman channels (386.7, 607.4 and 407.5-nm (water-vapor) wavelengths). The polychromator houses photo-multiplier tubes (PMT) for all the channels except for the NIR one, which is avalanche photodiode (APD) based. The optomechanical design uses 1-inch optics and Eurorack standards. The APD-based receiver uses a XY-axis translation/elevation micro-positioning stage due to its comparatively small active area and motorised neutral density filters are used in all PMT-based channels to avoid detector saturation. The design has been specially optimized to provide homogeneous spatial light distribution onto the photodetectors and good mechanical repeatability. All channels are acquired in mixed analog and photon-counting mode using
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.