There are several types of designs used for unicompartmental tibial components. The all-plastic inlay component is recessed and it preserves bone around the outer edge of the tibia. For an onlay component, the entire condyle is resected, and the plastic bearing is usually metal-backed, although all-plastic components are also available. The purpose of this study was to investigate the hypothesis that while 6-mm inlay components require less bone removal, the peak stresses and strains at the surface of the bone will be much greater when compared with 8-mm metal-backed onlay components, and that all-plastic onlays will be only a slight advantage over inlays. Tibial models were generated using computed tomography (CT) scans, while typical inlay and onlay components were modeled. Finite element analyses of bones and components were completed by assigning material properties based on the CT scans and applying loads. Results indicated that plastic inlays generated 6 times more peak stress at the tibial surface when compared with metal-backed onlays. Moreover, models using inlay components produced strain values exceeding onlay components by a factor of 13.5 due to areas of softer bone at the interface. Off-center loading toward the anterior or posterior of the components produced similar results. The stresses and strains for the 8-mm all-plastic onlay were reduced compared with the inlay but still much higher than for the metal-backed onlay. These findings indicated that metal-backed onlays may be a better option when considering load distribution on the tibial surface.
There are two main designs used for unicompartmental tibial components. The first design, an all plastic component called an inlay, preserves bone on the outer edge of the tibia which is feasible using a robotically-controlled burring tool. Also, the depth of resection is small, preserving the strongest cancellous bone which is near the surface. The second design, called an onlay, resects the entire condyle and includes a metal backed plate which rests on the resected tibia. This component requires more bone removal but metal-backing has previously been shown to distribute the load more uniformly. The purpose of this study was to investigate the hypothesis that while inlay components require less bone removal, the peak stresses and strains at the surface of the bone will be greater when compared to onlay components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.