Background Oxyresveratrol is a major bioactive component derived from the heartwood of Artocarpus lacucha . This compound exerts several biological activities, including neuroprotective effects in vitro and in vivo. However, there is limited pharmacokinetic information on this compound, especially its distribution in neuronal tissue and its route of excretion. The aim of this study was to investigate the pharmacokinetic profiles of oxyresveratrol alone and in combination with piperine as a bioenhancer in rats. Methods Male Wistar rats were administered with oxyresveratrol 10 mg/kg, oxyresveratrol 10 mg/kg plus piperine 1 mg/kg via intravenous or oxyresveratrol 100 mg/kg, oxyresveratrol 100 mg/kg plus piperine 10 mg/kg via oral gavage. Plasma, internal organs, urine, and feces were collected. Determination of the oxyresveratrol concentration in biological samples was performed by liquid chromatography tandem mass spectrometry. Results The combination with piperine had shown a significantly higher maximum concentration in plasma approximately 1500 μg/L within 1–2 h after oral dosing, and could increase oral bioavailability of oxyresveratrol approximately 2–fold. Oxyresveratrol could widely distributed most of the internal organs with a tissue to plasma ratio of 10–100 fold within 5 min after dosing. Urinary excretion of oxyresveratrol glucuronide was the major route of excretion after administration of oxyresveratrol alone and in combination with piperine. Conclusion The addition of piperine could enhance some of the pharmacokinetic properties of oxyresveratrol via both intravenous and oral administration. This pharmacokinetic information will be useful for appropriate strategies to develop oxyresveratrol as a phytopharmaceutical product. Electronic supplementary material The online version of this article (10.1186/s12906-019-2653-y) contains supplementary material, which is available to authorized users.
Background ECa 233 is a standardized extract of C. asiatica containing the triterpenoid glycosides, madecassoside to asiaticoside in the ratio of (1.5 ± 0.5):1. Anti-inflammatory activities of ECa 233 have been reported; however the immunomodulatory effects of ECa 233 on regulatory T cells, which have a pivotal role in immune regulation, has not been elucidated. Therefore, we investigated the effects of ECa 233 on regulatory T cells that may provide benefits in autoimmune and chronic inflammatory diseases. Methods ECa 233 was prepared as oral suspension in 0.5% carboxymethylcellulose and administered to male Wistar rats via oral gavage. The pharmacokinetics and toxicity of ECa 233 were evaluated. Splenic lymphocytes were isolated and analyzed by flow cytometry and qPCR to determine the immunomodulatory effects of ECa 233 on regulatory T cells. Results All rats had good tolerability to ECa 233 and other test preparations. The pharmacokinetic study showed low oral bioavailability for both triterpenoids, with the maximum plasma concentration reached at 4 h for asiaticoside and at 0.5 h for madecassoside. Multiple oral administration of ECa 233 reduced the frequency of T cells, particularly CD8 T cells in rats. ECa 233 enhanced the percentage of regulatory T cells, characterized by high expression of CD25+ and upregulation of FoxP3 gene. Conclusions The present study demonstrated that ECa 233 possesses immunosuppressive properties by enhancing regulatory T cells. These results provide in vivo evidence for the anti-inflammatory action of ECa 233, in line with previously reports, and the potential uses of ECa 233 in the treatment of chronic inflammatory and autoimmune diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.