The Karyopherin proteins are involved in nucleo-cytoplasmic trafficking and are critical for protein and RNA subcellular localization. Recent studies suggest they are important in nuclear envelope component assembly, mitosis and replication. Since these are all critical cellular functions, alterations in the expression of the Karyopherins may have an impact on the biology of cancer cells. In this study, we examined the expression of the Karyopherins, Crm1, Karyopherin b1 (Kpnb1) and Karyopherin a2 (Kpna2), in cervical tissue and cell lines. The functional significance of these proteins to cancer cells was investigated using individual siRNAs to inhibit their expression. Microarrays, quantitative RT-PCR and immunofluorescence revealed significantly higher expression of Crm1, Kpnb1 and Kpna2 in cervical cancer compared to normal tissue. Expression levels were similarly elevated in cervical cancer cell lines compared to normal cells, and in transformed epithelial and fibroblast cells. Inhibition of Crm1 and Kpnb1 in cancer cells significantly reduced cell proliferation, while Kpna2 inhibition had no effect. Noncancer cells were unaffected by the inhibition of Crm1 and Kpnb1. The reduction in proliferation of cancer cells was associated with an increase in a subG1 population by cell cycle analysis and Caspase-3/7 assays revealed increased apoptosis. Crm1 and Kpnb1 siRNA-induced apoptosis was accompanied by an increase in the levels of growth inhibitory proteins, p53, p27, p21 and p18. Our results demonstrate that Crm1, Kpnb1 and Kpna2 are overexpressed in cervical cancer and that inhibiting the expression of Crm1 and Kpnb1, not Kpna2, induces cancer cell death, making Crm1 and Kpnb1 promising candidates as both biomarkers and potential anticancer therapeutic targets. ' 2008 Wiley-Liss, Inc.Key words: cervical cancer; nuclear transport proteins; Crm1; Karyopherin b1; Karyopherin a2Cervical cancer is the second most common cancer among women worldwide, 1 with nearly 80% of cases occurring in developing countries. 2 The primary risk factor in the development of the disease is infection with the Human Papillomavirus (HPV), 3,4 and more than 90% of cervical cancers carry high-risk HPV DNA. 4,5 The HPV E6 and E7 oncoproteins are responsible for cancer development, and evidence has shown that they alone are sufficient to immortalize human foreskin keratinocytes. 6 Their continued expression is essential for maintaining the transformed state. 6 HPV E6 and E7 promote cellular transformation by binding to and blocking the functions of the cell cycle regulatory proteins, p53 and pRb, respectively. 7,8 Prophylactic vaccines against lowrisk (HPV6, 11) and high-risk (HPV16 and 18) HPV types have recently been developed. 9 They rely on the vaccination of women before exposure to the virus; hence, their benefit to women already infected with HPV is still unclear, as well as their benefit to women infected with HPV types other than HPV6, 11, 16 and 18.Although the high-risk HPV proteins are the causative agents behind cervical cance...
Background: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. Methods: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. Results: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20–60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30–50%, and reduced colony formation and cancer cell migration. Conclusion: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.
The rapid expansion of W-Beijing strains in a region with a very high background incidence of tuberculosis suggests that these strains have a significant selective advantage. The biological reasons for this observation remain unclear but warrant further study. The rapid spread of this virulent strain lineage is likely to present additional challenges for tuberculosis control.
SummaryThe interaction of microbes with pattern recognition receptors (PRRs) is essential for protective immunity. While many PRRs that recognize mycobacteria have been identified, none is essentially required for host defense in vivo. Here, we have identified the C-type lectin receptor CLECSF8 (CLEC4D, MCL) as a key molecule in anti-mycobacterial host defense. Clecsf8−/− mice exhibit higher bacterial burdens and increased mortality upon M. tuberculosis infection. Additionally, Clecsf8 deficiency is associated with exacerbated pulmonary inflammation, characterized by enhanced neutrophil recruitment. Clecsf8−/− mice show reduced mycobacterial uptake by pulmonary leukocytes, but infection with opsonized bacteria can restore this phagocytic defect as well as decrease bacterial burdens. Notably, a CLECSF8 polymorphism identified in humans is associated with an increased susceptibility to pulmonary tuberculosis. We conclude that CLECSF8 plays a non-redundant role in anti-mycobacterial immunity in mouse and in man.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.