First, the urinary metabolic profiling by gas chromatography-mass spectrometry (GC-MS), was performed to compare ten cadmium (Cd) toxicosis cases from a Cd-polluted area in Mae Sot (Thailand) with gender-matched healthy controls. Orthogonal partial list square-discrimination analysis was used to identify new biomarker candidates in highly Cd exposed toxicosis cases with remarkable renal tubular dysfunction. The results of the first step of this study showed that urinary citrate was a negative marker and myo-inositol was a positive marker for Cd toxicosis in Thailand. In the second step, we measured urinary citrate in the residents (168 Cd-exposed subjects and 100 controls) and found significantly lower levels of urinary citrate and higher ratios of calcium/citrate and magnesium/citrate, which are risk factors for nephrolithiasis, in highly Cd-exposed residents. Additionally, this inverse association of urinary citrate with urinary Cd was observed after adjustment for age, smoking and renal tubular dysfunction, suggesting a direct effect of Cd on citrate metabolism. These results indicate that urinary citrate is a useful biomarker for the adverse health effects of Cd exposure in a Thai population with a high prevalence of nephrolithiasis.
To elucidate the influence of cadmium exposure on bone metabolism, associations between urinary/blood cadmium and bone resorption/formation markers were investigated in older cadmium exposed men and women. Increased urinary cross-linked N-telopeptide of type I collagen (NTx), a bone resorption marker, was found to be associated with increased levels of parathyroid hormone, fractional excretion of calcium, and urinary/blood cadmium after adjusting for confounding factors in men. In women, urinary NTx was significantly associated with only urinary cadmium and a strong relationship with increased fractional excretion of calcium. Risk for bone metabolic disorders, indicated by high urinary NTx, significantly increased in men with blood cadmium ≥ 10 μg/L or urinary cadmium ≥ 10 μg/g creatinine. Increased osteocalcin level was significantly associated with increased blood cadmium in men. In conclusion, cadmium exposure appeared to have an influence on bone remodeling both bone resorption and formation in this population of older Thai men, and blood cadmium was more closely associated with bone metabolism than urinary cadmium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.