During disasters, people share their thoughts and emotions on social media and also provide information about the event. Mining the social media messages and updates can be helpful in understanding the emotional state of people during such unforeseen events as they are real-time data. The objective of this review is to explore the feasibility of using social media data for mental health surveillance as well as the techniques used for determining mental health using social media data during disasters. PubMed, PsycINFO, and PsycARTICLES databases were searched from 2009 to November 2018 for primary research studies. After screening and analyzing the records, 18 studies were included in this review. Twitter was the widely researched social media platform for understanding the mental health of people during a disaster. Psychological surveillance was done by identifying the sentiments expressed by people or the emotions they displayed in their social media posts. Classification of sentiments and emotions were done using lexicon-based or machine learning methods. It is not possible to conclude that a particular technique is the best performing one, because the performance of any method depends upon factors such as the disaster size, the volume of data, disaster setting, and the disaster web environment.
BackgroundThe recent outbreak of respiratory illness caused by COVID-19 in Wuhan, China, has received global attention as it has infected thousands of individuals there, and later it has also been reported from other countries internationally. This study aims at performing an exploratory study on Twitter to understand the information shared among the community regarding the COVID-19 outbreak.MethodsCOVID-19 related tweets were collected from Twitter using keywords from 18 January to 25 January 2020. Top-ranking tweets were taken as samples and then categorised based on the content. Expressions or opinion tweets were analysed qualitatively to understand the mindset of the people regarding the outbreak. Theme wise reachability evaluation of the messages was also performed.ResultsBased on the content of the tweets, five themes were evolved: (1) general information; (2) health information; (3) expressions; (4) humour and (5) others. 57.42% of messages are general information followed by expressive tweets (24.12%). Humorous messages were liked the most, whereas health information tweets were retweeted the maximum. Fear was the predominant emotion expressed in the messages.ConclusionThe results of the study would be useful to focus on the dissemination of the right information and effective communication on Twitter related to health and outbreak management.
Background: Natural disasters are known to take their psychological toll immediately, and over the long term, on those living through them. Messages posted on Twitter provide an insight into the state of mind of citizens affected by such disasters and provide useful data on the emotional impact on groups of people. In 2015, Chennai, the capital city of Tamil Nadu state in southern India, experienced unprecedented flooding, which subsequently triggered economic losses and had considerable psychological impact on citizens. The objectives of this study are to (i) mine posts to Twitter to extract negative emotions of those posting tweets before, during and after the floods; (ii) examine the spatial and temporal variations of negative emotions across Chennai city via tweets; and (iii) analyse associations in the posts between the emotions observed before, during and after the disaster. Methods: Using Twitter's application programming interface, tweets posted at the time of floods were aggregated for detailed categorisation and analysis. The different emotions were extracted and classified by using the National Research Council emotion lexicon. Both an analysis of variance (ANOVA) and mixed-effect analysis were performed to assess the temporal variations in negative emotion rates. Global and local Moran's I statistic were used to understand the spatial distribution and clusters of negative emotions across the Chennai region. Spatial regression was used to analyse over time the association in negative emotion rates from the tweets. Results: In the 5696 tweets analysed around the time of the floods, negative emotions were in evidence 17.02% before, 29.45% during and 11.39% after the floods. The rates of negative emotions showed significant variation between tweets sent before, during and after the disaster. Negative emotions were highest at the time of disaster's peak and reduced considerably post disaster in all wards of Chennai. Spatial clusters of wards with high negative emotion rates were identified. Conclusions: Spatial analysis of emotions expressed on Twitter during disasters helps to identify geographic areas with high negative emotions and areas needing immediate emotional support. Analysing emotions temporally provides insight into early identification of mental health issues, and their consequences, for those affected by disasters.
During and just after flash flood, data regarding water extent and inundation will not be available as the traditional data collection methods fail during disasters. Rapid water extent map is vital for disaster responders to identify the areas of immediate need. Real time data available in social networking sites like Twitter and Facebook is a valuable source of information for response and recovery, if handled in an efficient way. This study proposes a method for mining social media content for generating water inundation mapping at the time of flood. The case of 2015 Chennai flood was considered as the disaster event and 95 water height points with geographical coordinates were derived from social media content posted during the flood. 72 points were within Chennai and based on these points water extent map was generated for the Chennai city by interpolation. The water depth map generated from social media information was validated using the field data. The root mean square error between the actual water height data and extracted social media data was ± 0.3 m. The challenge in using social media data is to filter the messages that have water depth related information from the ample amount of messages posted in social media during disasters. Keyword based query was developed and framed in MySQL to filter messages that have location and water height mentions. The query was validated with tweets collected during the floods that hit Mumbai city in July 2019. The validation results confirm that the query reduces the volume of tweets for manual evaluation and in future will aid in mapping the water extent in near real time at the time of floods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.