Deleterious consequences of the management of respiratory distress syndrome (RDS) with invasive ventilation have led to more in-depth investigation of non-invasive ventilation (NIV) modalities. NIV has significantly and positively altered the treatment outcomes and improved mortality rates of preterm infants with RDS. Among the different NIV modes, nasal intermittent positive pressure ventilation (NIPPV) has shown considerable benefits compared to nasal continuous positive airway pressure (NCPAP). Despite reports of heated humidified high-flow nasal cannula’s (HHHFNC) non-inferiority compared to NCPAP, some trials have been terminated due to high treatment failure rates with HHHFNC use. Moreover, RDS management with the combination of INSURE (INtubation SURfactant Extubation) technique and NIV ensures higher success rates. This review elaborates on the currently used various modes of NIV and novel techniques are also briefly discussed.
Circular RNA (circRNA) has been increasingly proven as a new type of promising therapeutic RNA molecule in a variety of human diseases. However, the role of circRNA in bronchopulmonary dysplasia (BPD) has not yet been elucidated. Here, a new circRNA circABCC4 was identified from the Agilent circRNA chip as a differentially expressed circRNA in BPD. The relationship between circABCC4 level and BPD clinicopathological characteristics was analyzed. The function of circABCC4 was evaluated by performing CCK-8 and apoptosis analysis in vitro and BPD model analysis in vivo. RNA immunoprecipitation (RIP), luciferase reporter and rescue experiments were used to elucidate the interaction between circABCC4 and miR-663a. Luciferase reporter assay and rescue experiments were used to elucidate the interaction between PLA2G6 and miR-663a. CircABCC4 and PLA2G6 levels were increased, while miR-663a levels were decreased in the BPD group, compared to the control group. MiR-663a inhibited apoptosis by repressing PLA2G6 expression, while circABCC4 enhanced the apoptosis and inhibited the proliferation of A549 cells by sponging miR-663a and increasing PLA2G6 expression. In conclusion, circABCC4 promotes the evolving of BPD by spongening miR-663a and up-regulating PLA2G6 expression, which makes circABCC4 an ideal molecular target for early diagnosis and intervention of BPD.
Despite the advent of culture-independent techniques to identify members of the microbiome, studies focusing on the lung microbiome of neonates are scarce. Understanding the role of the microbiome in the pathogenesis of pulmonary conditions affecting newborns could lead to the initiation of pioneering therapeutic interventions, which could potentially prevent lifelong disability. Bronchopulmonary dysplasia (BPD) has been associated with a less diverse microbiome, presence of Ureaplasma species and reduced Lactobacillus detection. Additionally, the potential role of microbial dysbiosis in the pathogenesis of asthma, cystic fibrosis and pneumonia has been described. There has also been a surge of interest in attempting to elucidate the interactions between the airway and gut microbiomes and their bearings on respiratory health and diseases to eventually broaden the scope of therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.