-The optimization and evaluation of a pattern recognition system requires different problems like multi-class and imbalanced datasets be addressed. This paper presents the classification of multi-class datasets which present more challenges when compare to binary class datasets in machine learning. Furthermore, it argues that the performance evaluation of a classification model for multi-class imbalanced datasets in terms of simple "accuracy rate" can possibly provide misleading results. Other parameters such as failure avoidance, true identification of positive and negative instances of a class and class discrimination are also very important. We, in this paper, hypothesize that "misclassification of true positive patterns should not necessarily be categorized as false negative while evaluating a classifier for multi-class datasets", a common practice that has been observed in the existing literature. In order to address these hidden challenges for the generalization of a particular classifier, several evaluation metrics are compared for a multi-class dataset with four classes; three of them belong to different neurodegenerative diseases and one to control subjects. Three classifiers, linear discriminant, quadratic discriminant and Parzen are selected to demonstrate the results with examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.