With the tremendous growth of the internet, cyberspace is facing several threats from the attackers. Threats like spam emails account for 55\% of total emails according to the Symantec monthly threat report. Over time, the attackers moved on to image spam to evade the text-based spam filters. To deal with this, the researchers have several machine learning and deep learning approaches that use various features like metadata, color, shape, texture features. But the Deep Convolutional Neural Network (DCNN) and transfer learning-based pre-trained CNN models are not explored much for Image spam classification. Therefore, in this work, 2 DCNN models along with few pre-trained ImageNet architectures like VGG19, Xception are trained on 3 different datasets. The effect of employing a Cost-sensitive learning approach to handle data imbalance is also studied. Some of the proposed models in this work achieves an accuracy up to 99\% with zero false positive rate in best case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.