The high complexity of hydrological systems has long been recognized. Despite the increasing number of statistical techniques that aim to estimate hydrological quantiles at ungauged sites, few approaches were designed to account for the possible nonlinear connections between hydrological variables and catchments characteristics. Recently, a number of nonlinear machine‐learning tools have received attention in regional frequency analysis (RFA) applications especially for estimation purposes. In this paper, the aim is to study nonlinearity‐related aspects in the RFA of hydrological variables using statistical and machine‐learning approaches. To this end, a variety of combinations of linear and nonlinear approaches are considered in the main RFA steps (delineation and estimation). Artificial neural networks (ANNs) and generalized additive models (GAMs) are combined to a nonlinear ANN‐based canonical correlation analysis (NLCCA) procedure to ensure an appropriate nonlinear modeling of the complex processes involved. A comparison is carried out between classical linear combinations (CCAs combined with linear regression (LR) model), semilinear combinations (e.g., NLCCA with LR) and fully nonlinear combinations (e.g., NLCCA with GAM). The considered models are applied to three different data sets located in North America. Results indicate that fully nonlinear models (in both RFA steps) are the most appropriate since they provide best performances and a more realistic description of the physical processes involved, even though they are relatively more complex than linear ones. On the other hand, semilinear models which consider nonlinearity either in the delineation or estimation steps showed little improvement over linear models. The linear approaches provided the lowest performances.
Intensity-duration-frequency (IDF) curves of extreme rainfall are used extensively in infrastructure design and water resources management. In this study, a novel regional framework based on quantile regression (QR) is used to estimate rainfall IDF curves at ungauged locations. Unlike standard regional approaches, such as index-storm and at-site ordinary least-squares regression, which are dependent on parametric distributional assumptions, the non-parametric QR approach directly estimates rainfall quantiles as a function of physiographic characteristics. Linear and nonlinear methods are evaluated for both the regional delineation and IDF curve estimation steps. Specifically, delineation by canonical correlation analysis (CCA) and nonlinear CCA (NLCCA) is combined, in turn, with linear QR and nonlinear QR estimation in a regional modelling framework. An exhaustive comparative study is conducted between standard regional methods and the proposed QR framework at sites across Canada. Overall, the fully nonlinear QR framework, which uses NLCCA for delineation and nonlinear QR for estimation of IDF curves at ungauged sites, leads to the best results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.