We consider the problem of adaptively PAC-learning a probability distribution 𝒫's mode by querying an oracle for information about a sequence of i.i.d. samples X1, X2, … generated from 𝒫. We consider two different query models: (a) each query is an index i for which the oracle reveals the value of the sample Xi, (b) each query is comprised of two indices i and j for which the oracle reveals if the samples Xi and Xj are the same or not. For these query models, we give sequential mode-estimation algorithms which, at each time t, either make a query to the corresponding oracle based on past observations, or decide to stop and output an estimate for the distribution's mode, required to be correct with a specified confidence. We analyze the query complexity of these algorithms for any underlying distribution 𝒫, and derive corresponding lower bounds on the optimal query complexity under the two querying models.
In many applications, a dataset can be considered as a set of observed signals that live on an unknown underlying graph structure. Some of these signals may be seen as white noise that has been filtered on the graph topology by a graph filter. Hence, the knowledge of the filter and the graph provides valuable information about the underlying data generation process and the complex interactions that arise in the dataset. We hence introduce a novel graph signal processing framework for jointly learning the graph and its generating filter from signal observations. We cast a new optimisation problem that minimises the Wasserstein distance between the distribution of the signal observations and the filtered signal distribution model. Our proposed method outperforms stateof-the-art graph learning frameworks on synthetic data. We then apply our method to a temperature anomaly dataset, and further show how this framework can be used to infer missing values if only very little information is available.
The Jordan center of a graph is defined as a vertex whose maximum distance to other nodes in the graph is minimal, and it finds applications in facility location and source detection problems. We study properties of the Jordan center in the case of random growing trees. In particular, we consider a regular tree graph on which an infection starts from a root node and then spreads along the edges of the graph according to various random spread models. For the Independent Cascade (IC) model and the discrete Susceptible Infected (SI) model, both of which are discrete time models, we show that as the infected subgraph grows with time, the Jordan center persists on a single vertex after a finite number of timesteps. Finally, we also study the continuous time version of the SI model and bound the maximum distance between the Jordan center and the root node at any time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.