We demonstrate a first-principles method to study magnetotransport in materials by solving the Boltzmann transport equation (BTE) in the presence of an external magnetic field. Our approach employs ab initio electronphonon interactions and takes spin-orbit coupling into account. We apply our method to various semiconductors (Si and GaAs) and two-dimensional (2D) materials (graphene) as representative case studies. The magnetoresistance, Hall mobility, and Hall factor in Si and GaAs are in very good agreement with experiments. In graphene, our method predicts a large magnetoresistance, consistent with experiments. Analysis of the steady-state electron occupations in graphene shows the dominant role of optical phonon scattering and the breaking of the relaxation time approximation. Our paper provides a detailed understanding of the microscopic mechanisms governing magnetotransport coefficients, establishing the BTE in a magnetic field as a broadly applicable first-principles tool to investigate transport in semiconductors and 2D materials.
Bulk Dirac semimetals (DSMs) exhibit unconventional transport properties and phase transitions due to their peculiar low-energy band structure, yet the electronic interactions governing nonequilibrium phenomena in DSMs are not fully understood. Here we show that electron–phonon (e–ph) interactions in a prototypical bulk DSM, Na3Bi, are predominantly two-dimensional (2D). Our first-principles calculations reveal a 2D optical phonon with strong e–ph interactions associated with in-plane vibrations of Na atoms. We show that this 2D mode governs e–ph scattering and charge transport in Na3Bi and induces a dynamical phase transition to a Weyl semimetal. Our work advances the quantitative analysis of electron interactions in Na3Bi and reveals a dominant low-dimensional interaction in a bulk Dirac semimetal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.