State-of-the-art visual perception models for a wide range of tasks rely on supervised pretraining. ImageNet classification is the de facto pretraining task for these models. Yet, ImageNet is now nearly ten years old and is by modern standards "small". Even so, relatively little is known about the behavior of pretraining with datasets that are multiple orders of magnitude larger. The reasons are obvious: such datasets are difficult to collect and annotate. In this paper, we present a unique study of transfer learning with large convolutional networks trained to predict hashtags on billions of social media images. Our experiments demonstrate that training for large-scale hashtag prediction leads to excellent results. We show improvements on several image classification and object detection tasks, and report the highest ImageNet-1k single-crop, top-1 accuracy to date: 85.4% (97.6% top-5). We also perform extensive experiments that provide novel empirical data on the relationship between large-scale pretraining and transfer learning performance.
Self-supervised learning aims to learn representations from the data itself without explicit manual supervision. Existing efforts ignore a crucial aspect of self-supervised learning -the ability to scale to large amount of data because self-supervision requires no manual labels. In this work, we revisit this principle and scale two popular selfsupervised approaches to 100 million images. We show that by scaling on various axes (including data size and problem 'hardness'), one can largely match or even exceed the performance of supervised pre-training on a variety of tasks such as object detection, surface normal estimation (3D) and visual navigation using reinforcement learning. Scaling these methods also provides many interesting insights into the limitations of current self-supervised techniques and evaluations. We conclude that current self-supervised methods are not 'hard' enough to take full advantage of large scale data and do not seem to learn effective high level semantic representations. We also introduce an extensive benchmark across 9 different datasets and tasks. We believe that such a benchmark along with comparable evaluation settings is necessary to make meaningful progress. Code is at: https://github.com/facebookresearch/ fair_self_supervision_benchmark.
Current fully-supervised video datasets consist of only a few hundred thousand videos and fewer than a thousand domain-specific labels. This hinders the progress towards advanced video architectures. This paper presents an in-depth study of using large volumes of web videos for pre-training video models for the task of action recognition. Our primary empirical finding is that pre-training at a very large scale (over 65 million videos), despite on noisy social-media videos and hashtags, substantially improves the state-of-the-art on three challenging public action recognition datasets. Further, we examine three questions in the construction of weakly-supervised video action datasets. First, given that actions involve interactions with objects, how should one construct a verb-object pretraining label space to benefit transfer learning the most? Second, frame-based models perform quite well on action recognition; is pre-training for good image features sufficient or is pre-training for spatio-temporal features valuable for optimal transfer learning? Finally, actions are generally less well-localized in long videos vs. short videos; since action labels are provided at a video level, how should one choose video clips for best performance, given some fixed budget of number or minutes of videos?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.