This paper studies offline Imitation Learning (IL) where an agent learns to imitate an expert demonstrator without additional online environment interactions. Instead, the learner is presented with a static offline dataset of state-action-next state transition triples from a potentially less proficient behavior policy. We introduce Model-based IL from Offline data (MILO): an algorithmic framework that utilizes the static dataset to solve the offline IL problem efficiently both in theory and in practice. In theory, even if the behavior policy is highly sub-optimal compared to the expert, we show that as long as the data from the behavior policy provides sufficient coverage on the expert state-action traces (and with no necessity for a global coverage over the entire state-action space), MILO can provably combat the covariate shift issue in IL. Complementing our theory results, we also demonstrate that a practical implementation of our approach mitigates covariate shift on benchmark MuJoCo continuous control tasks. We demonstrate that with behavior policies whose performances are less than half of that of the expert, MILO still successfully imitates with an extremely low number of expert state-action pairs while traditional offline IL method such as behavior cloning (BC) fails completely. Source code is provided at https://github.com/jdchang1/milo. * Equal contribution † Work done outside of Amazon 3 in this work, we use cost instead of reward, thus we call A π disadvantage function.
Accounting for the effects of confounders is one of the central challenges in causal inference. Unstructured multi-modal data (images, time series, text) contains valuable information about diverse types of confounders, yet it is typically left unused by most existing methods. This paper seeks to develop techniques that leverage this unstructured data within causal inference to correct for additional confounders that may otherwise not be accounted for. We formalize this task and we propose algorithms based on deep structural equations that treat multi-modal unstructured data as proxy variables. We empirically demonstrate on tasks in genomics and healthcare that unstructured data can be used to correct for diverse sources of confounding, potentially enabling the use of large amounts of data that were previously not used in causal inference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.