The blood-brain barrier is the selectively permeable vasculature of the brain vital for maintaining homeostasis and neurological function. Low permeability is beneficial in the presence of toxins and pathogens in the blood. However, in the presence of metastatic brain tumors, it is a challenge for drug delivery. Although the blood-tumor barrier is slightly leaky, it still is not permissive enough to allow the accumulation of therapeutic drug concentrations in brain metastases. Herein, we discuss the differences between primary brain tumors and metastatic brain tumors vasculature, effects of therapeutics on the blood-tumor barrier, and characteristics to be manipulated for more effective drug delivery.
Novel metal oxide nanoparticle (NP) contrast agents may offer safety and functionality advantages over conventional gadolinium-based contrast agents (GBCAs) for cancer diagnosis by magnetic resonance imaging. However, little is known about the behavior of metal oxide NPs, or of their effect, upon coming into contact with the innate immune system. As neutrophils are the body’s first line of defense, we sought to understand how manganese oxide and iron oxide NPs impact leukocyte functionality. Specifically, we evaluated whether contrast agents caused neutrophils to release web-like fibers of DNA known as neutrophil extracellular traps (NETs), which are known to enhance metastasis and thrombosis in cancer patients. Murine neutrophils were treated with GBCA, bare manganese oxide or iron oxide NPs, or poly(lactic-co-glycolic acid) (PLGA)-coated metal oxide NPs with different incorporated levels of poly(ethylene glycol) (PEG). Manganese oxide NPs elicited the highest NETosis rates and had enhanced neutrophil uptake properties compared to iron oxide NPs. Interestingly, NPs with low levels of PEGylation produced more NETs than those with higher PEGylation. Despite generating a low rate of NETosis, GBCA altered neutrophil cytokine expression more than NP treatments. This study is the first to investigate whether manganese oxide NPs and GBCAs modulate NETosis and reveals that contrast agents may have unintended off-target effects which warrant further investigation.
Background: Mirabegron (MBN), a β-3 adrenergic agent, is used in the treatment of overactive bladder. MBN has alow water solubility, high first-pass metabolism, and low bioavailability, consequently, having poor absorption in the gastrointestinal tract. Objective: The present study is intended at formulating Mirabegron-loaded solid lipid nanoparticles (MBN-SLN) coated with PEG-400 to bypass hepatic first-pass metabolism and to improve its oral bioavailability. Methods: MBN-SLNs were developed using glyceryl monostearate by pre-emulsion- ultrasonication method which was then optimized applying Box-Behnken Design. The optimized batch of MBN-SLN was selected for surface-modification with PEG-400 (MBN-PEG-SLN) and characterized by photon correlation spectroscopy, DSC, and XRD. Bioavailability studies were conducted in Wistar rats after oral administration of plain MBN dispersion, MBN-SLN, and MBN-PEG-SLN. Results: Stable MBN-SLNs and MBN-PEG-SLN of the optimized batch having a mean particle size of 162.7 nm and 149.9 nm; Zeta potential of -39.1 mV and -30.9 mV; %entrapment of 89.90% and 90.12%, respectively, were developed. The results of the in-vitro drug release studies demonstrated a significant slow release of MBN from MBN-SLN (69.38%) and MBN-PEG-SLN (61.33%) as compared to the dispersion of pure drug (92.10%). The relative bioavailability, as a result of the invivostudies, of MBN from MBN-PEG-SLN increased by 2-fold, based on the Cmax values, in comparison with the plain MBN dispersion. Conclusion: Thus, the study established that the oral bioavailability of MBN could be improved by the administration of MBN-PEG-SLN. The obtained results indicate SLNs as a potential drug delivery system for improving the bioavailability of poorly bioavailable drugs such as MBN by abating the first-pass metabolism.
Background Approximately 20% of all cancer patients will develop brain metastases in their lifespan. The standard of care for patients with multiple brain metastases is whole-brain radiation therapy, which disrupts the blood–brain barrier. Previous studies have shown inflammatory mediators play a role in the radiation-mediated increase in permeability. Our goal was to determine if differential permeability post-radiation occurs between immunocompetent and immunocompromised mice. Methods We utilized a commissioned preclinical irradiator to irradiate brains of C57Bl/6J wild-type and athymic nude mice. Acute (3–24 h) effects on blood–brain barrier integrity were evaluated with our in-situ brain perfusion technique and quantitative fluorescent and phosphorescent microscopy. The presence of inflammatory mediators in the brain and serum was determined with a proinflammatory cytokine panel. Results Blood–brain barrier integrity and efflux transporter activity were altered in the immunocompetent mice 12 h following irradiation without similar observations in the immunocompromised mice. We observed increased TNF-α concentrations in the serum of wild-type mice immediately post-radiation and nude mice 12 h post-radiation. The brain concentration of CXCL1 was also increased in both mouse strains at the 12-h time point. Conclusions The immune response plays a role in the magnitude of blood–brain barrier disruption following irradiation in a time- and size-dependent manner.
Patients with metastatic breast cancer have high and continually increasing rates of brain metastases. During the course of the disease, brain metastases can occur in up to 30% of these patients. In most cases, brain metastases are diagnosed after significant disease progression. The blood-tumor barrier increases the difficulty of treating brain metastasis by preventing accumulation of chemotherapy within metastases at therapeutically effective concentrations. Traditional therapies, such as surgical resection, radiotherapy, and chemotherapy, have poor efficacy, as reflected by a low median survival rate of 5-8% after post-diagnosis. Low-intensity focused ultrasound (LiFUS) is a new treatment for enhancing drug accumulation within the brain and brain malignancies. In this study, we elucidate the effect of clinical LiFUS combined with chemotherapy on tumor survival and progression in a preclinical model of triple-negative breast cancer metastasis to the brain. LiFUS significantly increased the tumor accumulation of 14C-AIB and Texas Red compared to controls (p< 0.01). LiFUS-mediated opening of the BTB is size-dependent, which is consistent with our previous studies. Mice receiving LiFUS with combinatorial Doxil and paclitaxel showed a significant increase in median survival (60 days) compared to other groups. LiFUS plus combinatorial chemotherapy of paclitaxel and Doxil also showed the slowest progression of tumor burden compared to chemotherapy alone or individual chemotherapy and LiFUS combinations. This study shows that combining LiFUS with timed combinatorial chemotherapeutic treatment is a potential strategy for improving drug delivery to brain metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.