Although hormonal therapy (HT) inhibits the growth of hormone receptor-positive (HR+) breast (BrCa) and prostate (PrCa) cancers, HT resistance frequently develops within the complex metastatic microenvironment of the host organ (often the bone), a setting poorly recapitulated in 2D culture systems. To address this limitation, we cultured HR+ BrCa and PrCa spheroids and patient-derived organoids in 3D extracellular matrices (ECM) alone or together with bone marrow stromal cells (BMSC). In 3D monocultures, antiestrogens and antiandrogens induced anoikis by abrogating anchorage-independent growth of HR+ cancer cells but exhibited only modest effects against tumor cells residing in the ECM niche. In contrast, BMSC induced hormone-independent growth of BrCa and PrCa spheroids and restored lumen filling in the presence of HR-targeting agents. Molecular and functional characterization of BMSC-induced hormone independence and HT resistance in anchorage-independent cells revealed distinct context-dependent mechanisms. Cocultures of ZR75-1 and LNCaP with BMSC exhibited paracrine IL-6-induced HT resistance via attenuation of HR protein expression, which was reversed by inhibition of IL-6 or JAK signaling. Paracrine IL-6/JAK/STAT3-mediated HT resistance was confirmed in patient-derived organoids cocultured with BMSC. Distinctly, MCF7 and T47D spheroids retained ER protein expression in cocultures but acquired redundant compensatory signals enabling anchorage independence via ERK and PI3K bypass cascades activated in a non-IL-6-dependent manner. Collectively, these data characterize the pleiotropic hormone-independent mechanisms underlying acquisition and restoration of anchorageindependent growth in HR+ tumors. Combined analysis of tumor and microenvironmental biomarkers in metastatic biopsies of HT-resistant patients can help refine treatment approaches. Statement of significance This study uncovers a previously underappreciated dependency of tumor cells on HR signaling for anchorage-independent growth and highlights how the metastatic microenvironment restores this malignant property of cancer cells during hormone therapy. Research.
Background: Functional genomics studies based on CRISPR and shRNA have documented that multiple myeloma (MM) cells are preferentially dependent (compared to other neoplasias) on a series of TFs, including IKZF1 and IKZF3 (which are targeted by thalidomide derivatives) and others that are not amenable to degradation or small molecule inhibition. Transcriptional co-factors have been therapeutically targeted, for example, inhibitors of BRD4, a co-factor for pTEFB, can be used to down-regulate c-myc. Aim: To identify new transcriptional vulnerabilities in MM with an emphasis on transcriptional co-factors Methods: We integrated results from genome-scale studies using the AVANA library for loss-of-function by gene editing (in 19 MM lines) and the Calabrese library for CRISPR-mediated gene activation (in 5 MM lines) to identify critical transcriptional co-factors (co-TFs). RNA-Seq analysis was used to identify critical pathways affected by POU2AF1 activation and existing ChIP-Seq tracks in MM cells were reanalyzed. Results: POU2AF1 (OCA-B) was the most preferentially essential TF co-factor in MM cell lines vs. non-MM and one of top genes which, upon CRISPR activation in genome-scale studies, increased MM cell fitness in vitro. We further confirmed the role of this gene using focused libraries of sgRNAs against POU2AF1 in vitro and in an in vivo model of MM cell growth in bone marrow-like scaffolds "functionalized" with humanized mesenchymal bone marrow stromal cells to simulate the human BM. CRISPR activation of POU2AF1 is associated with increased MM cell growth. RNA-Seq of POU2AF1 activation in LP1 cells a transcriptional program characterized by upregulation of other genes that are preferentially essential for MM including PRDM1, SUPT7L, UBE2G2 and TSC1; broad-spectrum oncogenic dependencies (e.g KRAS) and genes known or proposed to be involved in the pathophysiology of MM or other neoplasias (e.g. RUNX2, FGFR3, SMO, CREB5, TNFRSF13B, MEF2D, PCGF2). POU2AF1 overexpression was also associated with down-regulation of CDKN1C; of MHC class II molecules and their transcriptional activator CIITA, suggesting that POU2AF1 activation could also contribute to increased MM growth in vivo by allowing escape from immune surveillance. ATAC-Seq data and genome-wide ChIPseq for H3K27Ac in MM cell lines indicate that chromatin surrounding the POU2AF1 locus was highly accessible, concordant with the consistent expression of this TF in MM cell lines and patient-derived cells. CoMMpass data showed that POU2AF1 expression was enhanced in a subset of MM patients at relapse compared to diagnosis. Motif analysis of ChIP-seq data for POU2AF1 identified significant overlap with motifs for TFs relevant to the POU family (e.g. Oct11, Oct2, Oct4); members of the ETS family (e.g. ELF1, Elf4, GABPA); and other TFs with roles in MM including c-myc; IRF4; NF-kappaB, PRDM1, RUNX2 and the POU2AF1 target CREB5. These data suggest a functional interaction between POU2AF1 and other MM-relevant TFs. The transcriptional signature of POU2AF1 activation is enriched for genes downregulated by suppression/inhibition of MM-preferential TFs or epigenetic regulators including IRF4, PRDM1, IKZF1/3 and DOT1L. POU2AF1 binding motifs are also enriched in the promoter regions of MM-preferential dependencies including several MM-preferential TFs. Conclusions: POU2AF1 is essential for MM cells in vitro and in vivo; has a significantly more pronounced and recurrent role as a dependency in MM compared to most other neoplasias; and can further drive MM cell growth, through its ability to interact with several TFs critical for MM, forming multi-protein functional complexes. These results establish POU2AF1 as a central component in the regulatory network of oncogenic TFs in MM and highlight the value of further exploring POU2AF1 as a therapeutic target in MM. Disclosures Downey-Kopyscinski: Rancho BioSciences, LLC: Current Employment. Tsherniak:Cedilla Therapeutics: Consultancy; Tango Therapeutics: Consultancy. Boise:AstraZeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Genetech: Membership on an entity's Board of Directors or advisory committees. Mitsiades:FIMECS: Consultancy, Honoraria; Ionis Pharmaceuticals, Inc.: Consultancy, Honoraria; Arch Oncology: Research Funding; Janssen/Johnson & Johnson: Research Funding; Karyopharm: Research Funding; TEVA: Research Funding; Takeda: Other: employment of a relative; Fate Therapeutics: Consultancy, Honoraria; Sanofi: Research Funding; Abbvie: Research Funding; EMD Serono: Research Funding.
Chemo-persistent residual tumors are a major barrier for curative cancer therapy and provide a reservoir of cancer cells for eventual relapse. This clinically critical tumor cell population is poorly understood and lacks faithful in vitro models. We compared the transcriptional profiles of paired samples from patient with solid tumors or hematological neoplasias at the stage of post-treatment residual tumors or minimal residual disease vs. at their respective baselines. For a large proportion of patients, post-treatment tumor cells had a molecular signature that resembled that of embryonic diapause, a dormant stage of suspended development in early mammalian embryos triggered by stress and induced by suppression of Myc activity and overall biosynthesis. This Myc-inactivated molecular program was acquired during treatment and not pre-existing at baseline. Remarkably, baseline tumors with multiple MYC copy numbers maintained their MYC amplification in the post-treatment persistent tumor cells but suppressed Myc activity. We simulated this cancer cell state using preclinical models of breast and prostate cancer and multiple myeloma, including patient-derived cancer organoids and PDX models. Parallel approaches of genome sequencing and DNA barcode-mediated clonal tracking in vitro and in vivo independently indicated that the residual cancer cell subpopulations that persisted after treatment with common chemotherapeutic classes were not driven by rare pre-existing clones or de novo genetic events. Transcriptional analysis of the treatment-persistent cancer cells in 3D organoid cultures and in xenograft/PDX models indicated a diapause-like transcriptional adaptation with inactivated Myc, similar to that in patients. We functionally examined the role of Myc suppression in in vitro models of breast cancer and multiple myeloma using genetic (CRISPR/Cas9 editing and interference) and pharmacological (inhibition of Myc transcriptional co-activator Brd4) approaches. Suppression of Myc in cancer cells induced an embryonic diapause-like molecular profile and attenuated the acute chemotherapeutic cytotoxicity. Myc-inactivated cancer cells had reduced apoptotic priming and maintained low redox stress even in the presence of cytotoxic agents, which may contribute to cell survival during treatment. High-throughput screening of chemo-persistent cells revealed that inhibitors of CDK9 could revert the biosynthetic pause, reactivate Myc, attenuate the diapause-like state, and re-sensitize the residual cancer cells to chemotherapy. Overall, our study shows that cancer cells can co-opt the stress survival mechanism of embryonic diapause by dynamically suppressing Myc to enter transient drug-refractory dormancy. Citation Format: Eugen Dhimolea, Ricardo De Matos Simoes, Dhvanir Kansara, Caroline Vilas, Aziz Al'Khafaji, Juliette Bouyssou, Aedin Culhane, Constantine S. Mitsiades. Treatment-induced embryonic diapause-like adaptation through suppression of Myc activity as mediator of drug persistence in cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 42.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.