The chemical expansion of Pr0.1Ce0.9O2–δ
(PCO) and CeO2–δ
thin films is investigated in the temperature range between 600 °C and 800 °C by laser Doppler vibrometry (LDV). It enables non-contact determination of nanometer scale changes in film thickness at high temperatures. The present study is the first systematic and detailed investigation of chemical expansion of doped and undoped ceria thin films at temperatures above 650 °C. The thin films were deposited on yttria stabilized zirconia substrates (YSZ), operated as an electrochemical oxygen pump, to periodically adjust the oxygen activity in the films, leading to reversible expansion and contraction of the film. This further leads to stresses in the underlying YSZ substrates, accompanied by bending of the overall devices. Film thickness changes and sample bending are found to reach up to 10 and several hundred nanometers, respectively, at excitation frequencies from 0.1 to 10 Hz and applied voltages from 0–0.75 V for PCO and 0–1 V for ceria. At low frequencies, equilibrium conditions are approached. As a consequence maximum thin-film expansion of PCO is expected due to full reduction of the Pr ions. The lower detection limit for displacements is found to be in the subnanometer range. At 800 °C and an excitation frequency of 1 Hz, the LDV shows a remarkable resolution of 0.3 nm which allows, for example, the characterization of materials with small levels of expansion, such as undoped ceria at high oxygen partial pressure. As the correlation between film expansion and sample bending is obtained through this study, a dimensional change of a free body consisting of the same material can be calculated using the high resolution characteristics of this system. A minimum detectable dimensional change of 5 pm is estimated even under challenging high-temperature conditions at 800 °C opening up opportunities to investigate electro-chemo-mechanical phenomena heretofore impossible to investigate. The expansion data are correlated with previous results on the oxygen nonstoichiometry of PCO thin films, and a defect model for bulk ceria solid solutions is adopted to calculate the cation and anion radii changes in the constrained films during chemical expansion. The constrained films exhibit anisotropic volume expansion with displacements perpendicular to the substrate plane nearly double that of bulk samples. The PCO films used here generate high total displacements of several 100 nm’s with high reproducibility. Consequently, PCO films are identified to be a potential core component of high-temperature actuators. They benefit not only from high displacements at temperatures where most piezoelectric materials no longer operate while exhibiting, low voltage operation and low energy consumption.
ZusammenfassungBei der kontaktlosen Schwingungsmessung im Hochtemperaturbereich mit einem heterodynen Laser-Doppler-Vibrometer begrenzen insbesondere im Frequenzbreich unter 50 Hz mehrere Faktoren die minimal auflösbaren Schwingungsamplituden. In diesem Beitrag werden der Einfluss des Hitzeflimmerns auf den Rauschpegel analysiert und Methoden vorgestellt, wie dieser Einfluss minimiert werden kann. Darüber hinaus werden weitere begrenzende Faktoren wie der Einfluss der Laufzeitunterschiede der Laserstrahlen sowie Lösungen zu deren Minimierung vorgestellt.
The chemical expansion of ceria (CeO2−δ) and ceria-zirconia (Ce0.8Zr0.2O2−δ, CZO80) thin films is investigated by high-temperature laser Doppler vibrometry (LDV) at temperatures from 600 to 950 °C. The films are deposited on single-crystalline 8 mol-% yttria-stabilized zirconia substrates, which act as pumping cells to adjust oxygen non-stoichiometry in the thin films. Oxygen deficiency causes film expansion, leading to mechanical strain that bends the sample. The total displacement, i.e., the sum of bending and film-thickness change, is determined contact-less by LDV. A differential laser Doppler vibrometer (D-LDV) is realized to enable measurements on a very long time scale, which is necessary due to the long equilibrium times of the ceramic films. These displacements are compared to those acquired with a commercial single-point laser Doppler vibrometer (SP-LDV) for motions above 1 Hz. Here, both devices yield similar results. CZO80 films are found to bend a substrate much more than ceria films under similar experimental conditions. A model describing the displacement of the sample is derived from the Stoney model and applied to calculate deflections using literature data. The displacements at the center of the CZO80 sample measured with the SP-LDV increase from 0.18 nm at 10 Hz and 600 °C to 32.7 nm at 0.1 Hz and 800 °C. For ceria, the displacements range from 1.6 nm (10 Hz, 800 °C) to 79.4 nm (0.1 Hz, 900 °C). The D-LDV enables the detection of quasi-static displacements at very low frequencies. The ceria sample exhibits 218 nm at 0.001 Hz and 800 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.