The cryptic species Middle East-Asia Minor 1 (MEAM1), formerly referred to as 'B biotype', of the whitefly Bemisia tabaci complex entered China in the mid 1990s, and the Mediterranean (MED) cryptic species, formerly referred to as 'Q biotype', of the same whitefly complex entered China around 2003. Field surveys in China after 2003 indicate that in many regions MED has been replacing the earlier invader MEAM1. The factors underlying this displacement are unclear. We conducted laboratory experiments and field sampling to examine the effects of insecticide application on the competitive interactions between MEAM1 and MED. In the laboratory, on cotton, a plant showing similar levels of suitability to both whitefly species, MEAM1 displaced MED in five generations when initial populations of the two species were equal and no insecticide was applied. In contrast, MED displaced MEAM1 in seven and two generations, respectively, when 12.5 and 50.0 mg l⁻¹ imidacloprid was applied to the plants via soil drench. Field sampling indicated that in a single season MED displaced MEAM1 on crops heavily sprayed with neonicotinoid insecticides but the relative abundance of the two species changed little on crops without insecticide spray. We also examined the effects of host plants on the competitive interactions between the two species in the laboratory. When cohorts with equal abundance of MEAM1 and MED were set up on different host plants, MEAM1 displaced MED on cabbage and tomato in five and seven generations, respectively, but MED displaced MEAM1 on pepper in two generations. As field populations of MED have lower susceptibility than those of MEAM1 to nearly all commonly used insecticides including imidacloprid, insecticide application seems to have played a major role in shifting the species competitive interaction effects in favour of MED in the field across China. Host plants may also shape competition between the two species depending on the relative levels of plant suitability.
The B and Q 'biotypes' of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) have been invading many parts of the world and causing severe damage to a range of crops. Recent phylogenetic analyses indicate that B and Q are cryptic species within the B. tabaci species complex. Although various attempts have been made to examine the reproductive compatibility between B and Q, few studies have tested the fertility of the F1 females and so the extent of possible gene flow remains unclear. In this study, we conducted a series of crossing experiments and behavioural observations to examine in detail the reproductive compatibility between the B and Q biotypes collected from Zhejiang, China, a region recently invaded by these whiteflies. Crossing experiments between the two biotypes using either single-pairs or small groups demonstrated that proportions of females in the F1 progeny were only 0-2% in the inter-biotype crosses compared to 58-68% in the intra-biotype treatments. Furthermore, all inter-biotype F1 females were sterile. Continuous video observations showed that B and Q adults very rarely copulated, and copulation occurred only when adults of opposite sex from different biotypes were enclosed in dense cohorts for a relatively long period of time. These data show that the B and Q biotypes examined in this study are completely isolated in reproduction. The isolation was due to mainly a copulation barrier, but post-copulation barriers were also involved.
Recent phylogenetic analysis using mitochondrial cytochrome oxidase I (mtCOI) sequences of Bemisia tabaci worldwide indicates that the whitefly comprises at least 24 morphologically indistinguishable but genetically distinct cryptic species. While evidence of reproductive isolation has been reported for some of the putative species, more extensive crossing experiments are required to clarify the systematics of this species complex. In this study, we established laboratory cultures for six putative species of B. tabaci collected in China. We conducted 22 inter‐species crosses among the six putative species. The data and those reported previously were collated, and the combined dataset covered all the 30 possible inter‐species crosses among the six putative species. Intra‐species controls always produced female and male progeny and the proportions of females in the first generation (F1) ranged from 56% to 70%. However, in inter‐species crosses female progeny were rarely produced, and the few F1 females produced in four of the 30 inter‐species crosses were either sterile or significantly weaker in viability. These results demonstrate a pattern of complete reproductive isolation among the six putative species and show that they are six cryptic species in the B. tabaci complex.
Reproductive interference is one of the major factors mediating species exclusion among insects. The cryptic species Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) of the whitefly Bemisia tabaci complex have invaded many parts of the world and often exhibit niche overlap and reproductive interference. However, contrasting patterns of competitive displacement between the two invaders have been observed between regions such as those in USA and China. Understanding the roles of reproductive interference in competitive interactions between populations of the two species in different regions will help unravel other factors related to their invasion. We integrated laboratory population experiments, behavioural observations and simulation modelling to investigate the role of reproductive interference on species exclusion between MEAM1 and MED in China. In mixed cohorts of the two species MEAM1 always excluded MED in a few generations when the initial proportion of MEAM1 was ⩾0.25. Even when the initial proportion of MEAM1 was only 0.10, however, MEAM1 still had a higher probability of excluding MED than that for MED to exclude MEAM1. Importantly, we show that as MEAM1 increased in relative abundance, MED populations became increasingly male-biased. Detailed behavioural observations confirmed that MEAM1 showed a stronger reproductive interference than MED, leading to reduced frequency of copulation and female progeny production in MED. Using simulation modelling, we linked our behavioural observations with exclusion experiments to show that interspecific asymmetric reproductive interference predicts the rate of species exclusion of MED by MEAM1. These findings not only reveal the importance of reproductive interference in the competitive interactions between the two invasive whiteflies as well as the detailed behavioural mechanisms, but also provide a valuable framework against which the effects of other factors mediating species exclusion can be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.