Cell Research (2015) 25:981-984.
Bone morphogenetic proteins (BMPs) are multi-functional growth factors that belong to the transforming growth factor beta (TGFbeta) superfamily. The roles of BMPs in embryonic development and cellular functions in postnatal and adult animals have been extensively studied in recent years. Signal transduction studies have revealed that Smad1, 5 and 8 are the immediate downstream molecules of BMP receptors and play a central role in BMP signal transduction. Studies from transgenic and knockout mice and from animals and humans with naturally occurring mutations in BMPs and related genes have shown that BMP signaling plays critical roles in heart, neural and cartilage development. BMPs also play an important role in postnatal bone formation. BMP activities are regulated at different molecular levels. Preclinical and clinical studies have shown that BMP-2 can be utilized in various therapeutic interventions such as bone defects, non-union fractures, spinal fusion, osteoporosis and root canal surgery. Tissue-specific knockout of a specific BMP ligand, a subtype of BMP receptors or a specific signaling molecule is required to further determine the specific role of a BMP ligand, receptor or signaling molecule in a particular tissue. BMPs are members of the TGFbeta superfamily. The activity of BMPs was first identified in the 1960s (Urist, M.R. (1965) "Bone formation by autoinduction", Science 150, 893-899), but the proteins responsible for bone induction remained unknown until the purification and sequence of bovine BMP-3 (osteogenin) and cloning of human BMP-2 and 4 in the late 1980s (Wozney, J.M. et al. (1988) "Novel regulators of bone formation: molecular clones and activities", Science 242, 1528-1534; Luyten, F.P. et al. (1989) "Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation", J. Biol. Chem. 264, 13377-13380; Wozney, J.M. (1992) "The bone morphogenetic protein family and osteogenesis", Mol. Reprod. Dev. 32, 160-167). To date, around 20 BMP family members have been identified and characterized. BMPs signal through serine/threonine kinase receptors, composed of type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, type IA and IB BMP receptors (BMPR-IA or ALK-3 and BMPR-IB or ALK-6) and type IA activin receptor (ActR-IA or ALK-2) (Koenig, B.B. et al. (1994) "Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells", Mol. Cell. Biol. 14, 5961-5974; ten Dijke, P. et al. (1994) "Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4", J. Biol. Chem. 269, 16985-16988; Macias-Silva, M. et al. (1998) "Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2", J. Biol. Chem. 273, 25628-25636). Three type II receptors for BMPs have also been identified and they are type II BMP receptor (BMPR-II) and type II and IIB activin receptors (ActR-II and ActR-IIB) (Yamashita, H. et al. (1995) "Osteogenic protein-1 binds to activin type II receptors and induces certain...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.