A major concern when installing the cables into the underground conduit is minimizing the tensile forces exerted on the cables as they are pulled. This knowledge makes it possible to avoid over conservative design practices and to achieve substantial saving during construction. A general computing algorithm of predicting the tensile force of the cable pulled through the underground conduit with an arbitrary configuration is presented in this paper, which is based on multibody system dynamic formulation. The presented multibody dynamic model for this problem consists of the cable, the underground conduit, and the interaction between the cable and the conduit. In this paper, the cable is modeled by the finite cable element based on an absolute nodal coordinate formulation. The interaction between the cable and the underground conduit is described by the Hertz contact theory. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed method for estimating the cable tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.