Intracellular accumulation of wild-type tau is a hallmark of sporadic Alzheimer's disease (AD), but the molecular mechanisms underlying tau-induced synapse impairment and memory deficit are poorly understood. Here we found that overexpression of human wild-type full-length tau (termed hTau) induced memory deficits with impairments of synaptic plasticity. Both in vivo and in vitro data demonstrated that hTau accumulation caused remarkable dephosphorylation of cAMP response element binding protein (CREB) in the nuclear fraction. Simultaneously, the calcium-dependent protein phosphatase calcineurin (CaN) was up-regulated, whereas the calcium/ calmodulin-dependent protein kinase IV (CaMKIV) was suppressed. Further studies revealed that CaN activation could dephosphorylate CREB and CaMKIV, and the effect of CaN on CREB dephosphorylation was independent of CaMKIV inhibition. Finally, inhibition of CaN attenuated the hTau-induced CREB dephosphorylation with improved synapse and memory functions. Together, these data indicate that the hTau accumulation impairs synapse and memory by CaN-mediated suppression of nuclear CaMKIV/CREB signaling. Our findings not only reveal new mechanisms underlying the hTau-induced synaptic toxicity, but also provide potential targets for rescuing tauopathies.is the most common neurodegenerative disorder characterized clinically by progressive memory loss (1). The extracellular precipitation of β-amyloid (Aβ) (2), intracellular tau accumulation forming neurofibrillary tangles (3), and profound synapse degeneration are hallmark pathologies in AD brains (4, 5). Studies show that formation of neurofibrillary tangles is positively correlated with the degree of dementia symptoms (6), and the Aβ toxicity needs the presence of tau (7). These data suggest a crucial role of tau accumulation in neurodegeneration and the cognitive impairments in patients with AD. As a cytoskeleton protein, how tau accumulation causes memory deficits is not fully understood.Synapse is the fundamental unit for learning and memory. Dysfunction of synaptic connections is recognized as the cause of memory impairments, and significant synapse loss has been observed in mild cognitive impairment (MCI) and in earlier stages of AD (8). In AD mouse models, synapse impairments appear before the onset of memory deficit (9), whereas amelioration of synapse loss by administration of estradiol preserves cognitive functions (10). Earlier investigations into AD-related synaptic damages have been mainly focused on the toxic effects of Aβ (11). Recently, an emerging role of tau in synaptic impairment has been shown (12). For instance, overexpression of human mutant tau in mice induces synaptic degeneration even in the absence of tangles (13, 14) and reducing endogenous tau in mouse models carrying the mutated amyloid precursor protein (APP) prevents the cognitive deficits and synaptic loss (15).Among many structural or functional proteins involved in synapse development and memory formation, cAMP response element binding protein (CREB) is...
The basolateral amygdala (BLA) and ventral hippocampal CA1 (vCA1) are cellularly and functionally diverse along their anterior-posterior and superficial-deep axes. Here, we find that anterior BLA (aBLA) and posterior BLA (pBLA) innervate deep-layer calbindin1-negative (Calb1−) and superficial-layer calbindin1-positive neurons (Calb1+) in vCA1, respectively. Photostimulation of pBLA-vCA1 inputs has an anxiolytic effect in mice, promoting approach behaviours during conflict exploratory tasks. By contrast, stimulating aBLA-vCA1 inputs induces anxiety-like behaviour resulting in fewer approaches. During conflict stages of the elevated plus maze task vCA1 Calb1+ neurons are preferentially activated at the open-to-closed arm transition, and photostimulation of vCA1 Calb1+ neurons at decision-making zones promotes approach with fewer retreats. In the APP/PS1 mouse model of Alzheimer's disease, which shows anxiety-like behaviour, photostimulating the pBLA-vCA1 Calb1+ circuit ameliorates the anxiety in a Calb1-dependent manner. These findings suggest the pBLA-vCA1 Calb1+ circuit from heterogeneous BLA-vCA1 connections drives approach behaviour to reduce anxiety-like behaviour.
Different emotional states lead to distinct behavioural consequences even when faced with the same challenging events. Emotions affect learning and memory capacities, but the underlying neurobiological mechanisms remain elusive. Here we establish models of learned helplessness (LHL) and learned hopefulness (LHF) by exposing animals to inescapable foot shocks or with anticipated avoidance trainings. The LHF animals show spatial memory potentiation with excitatory monosynaptic upscaling between posterior basolateral amygdale (BLP) and ventral hippocampal CA1 (vCA1), whereas the LHL show memory deficits with an attenuated BLP–vCA1 connection. Optogenetic disruption of BLP–vCA1 inputs abolishes the effects of LHF and impairs synaptic plasticity. By contrast, targeted BLP–vCA1 stimulation rescues the LHL-induced memory deficits and mimics the effects of LHF. BLP–vCA1 stimulation increases synaptic transmission and dendritic plasticity with the upregulation of CREB and intrasynaptic AMPA receptors in CA1. These findings indicate that opposite excitatory monosynaptic scaling of BLP–vCA1 controls LHF- and LHL-modulated spatial memory, revealing circuit-specific mechanisms linking emotions to memory.
Alzheimer’s disease (AD) is characterized by profound synapse loss and impairments of learning and memory. Magnesium affects many biochemical mechanisms that are vital for neuronal properties and synaptic plasticity. Recent studies have demonstrated that the serum and brain magnesium levels are decreased in AD patients; however, the exact role of magnesium in AD pathogenesis remains unclear. Here, we found that the intraperitoneal administration of magnesium sulfate increased the brain magnesium levels and protected learning and memory capacities in streptozotocin-induced sporadic AD model rats. We also found that magnesium sulfate reversed impairments in long-term potentiation (LTP), dendritic abnormalities, and the impaired recruitment of synaptic proteins. Magnesium sulfate treatment also decreased tau hyperphosphorylation by increasing the inhibitory phosphorylation of GSK-3β at serine 9, thereby increasing the activity of Akt at Ser473 and PI3K at Tyr458/199, and improving insulin sensitivity. We conclude that magnesium treatment protects cognitive function and synaptic plasticity by inhibiting GSK-3β in sporadic AD model rats, which suggests a potential role for magnesium in AD therapy.
Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer’s disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.