Abstract-Most studies on bilateral teleoperation assume known system kinematics and only consider dynamical uncertainties. However, many practical applications involve tasks with both kinematics and dynamics uncertainties. In this paper, trilateral teleoperation systems with dual-master-single-slave framework are investigated, where a single robotic manipulator constrained by an unknown geometrical environment is controlled by dual masters. The network delay in the teleoperation system is modeled as Markov chain-based stochastic delay, then asymmetric stochastic time-varying delays, kinematics and dynamics uncertainties are all considered in the force-motion control design. First, a unified dynamical model is introduced by incorporating unknown environmental constraints. Then, by exact identification of constraint Jacobian matrix, adaptive neural network approximation method is employed, and the motion/force synchronization with time delays are achieved without persistency of excitation condition. The neural networks and parameter adaptive mechanism are combined to deal with the system uncertainties and unknown kinematics. It is shown that the system is D. Wang is with the Key Laboratory of Autonomous System and Network Control, Ministry of Education, South China University of Technology, Guangzhou, China, and also with the College of Automation Science and Engineering, South China University of Technology, Guangzhou,
An extended asynchronous switching model is investigated for a class of switched stochastic nonlinear retarded systems in the presence of both detection delay and false alarm, where the extended asynchronous switching is described by two independent and exponentially distributed stochastic processes, and further simplified as Markovian. Based on the Razumikhin-type theorem incorporated with average dwell-time approach, the sufficient criteria for global asymptotic stability in probability and stochastic input-to-state stability are given, whose importance and effectiveness are finally verified by numerical examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.