Current top-performing object detectors depend on deep CNN backbones, such as ResNet-101 and Inception, benefiting from their powerful feature representations but suffering from high computational costs. Conversely, some lightweight model based detectors fulfil real time processing, while their accuracies are often criticized. In this paper, we explore an alternative to build a fast and accurate detector by strengthening lightweight features using a hand-crafted mechanism. Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the feature discriminability and robustness. We further assemble RFB to the top of SSD, constructing the RFB Net detector. To evaluate its effectiveness, experiments are conducted on two major benchmarks and the results show that RFB Net is able to reach the performance of advanced very deep detectors while keeping the real-time speed. Code is available at https://github.com/ruinmessi/RFBNet.
International audienceLocal Binary Patterns (LBP) is a non-parametric descriptor whose aim is to efficiently summarize the local structures of images. In recent years, it has aroused increasing interest in many areas of image processing and computer vision, and has shown its effectiveness in a number of applications, in particular for facial image analysis, including tasks as diverse as face detection, face recognition, facial expression analysis, demographic classification, etc. This paper presents a comprehensive survey of LBP metho-dology including several more recent variations. As a typical ap-plication of the LBP approach, LBP-based facial image analysis is extensively reviewed, while its successful extensions in dealing with various tasks of facial image analysis are also highlighted
The two underlying requirements of face age progression, i.e. aging accuracy and identity permanence, are not well studied in the literature. In this paper, we present a novel generative adversarial network based approach. It separately models the constraints for the intrinsic subjectspecific characteristics and the age-specific facial changes with respect to the elapsed time, ensuring that the generated faces present desired aging effects while simultaneously keeping personalized properties stable. Further, to generate more lifelike facial details, high-level age-specific features conveyed by the synthesized face are estimated by a pyramidal adversarial discriminator at multiple scales, which simulates the aging effects in a finer manner. The proposed method is applicable to diverse face samples in the presence of variations in pose, expression, makeup, etc., and remarkably vivid aging effects are achieved. Both visual fidelity and quantitative evaluations show that the approach advances the state-of-the-art.
Pedestrian detection in a crowd is a very challenging issue. This paper addresses this problem by a novel Non-Maximum Suppression (NMS) algorithm to better refine the bounding boxes given by detectors. The contributions are threefold: (1) we propose adaptive-NMS, which applies a dynamic suppression threshold to an instance, according to the target density; (2) we design an efficient subnetwork to learn density scores, which can be conveniently embedded into both the single-stage and two-stage detectors; and (3) we achieve state of the art results on the CityPersons and CrowdHuman benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.