Hot dry rock (HDR), as a kind of geothermal energy resource, has attracted much attention due to its wide distribution and huge reserves. This paper presents a numerical study on energy mining in the HDR by the enhanced geothermal system (EGS). The thermal-hydraulic-mechanical coupling model is employed in these simulations. The multi-field evolution process and the influence of the fracture parameters on the heat recovery performance of an EGS are analyzed comprehensively. The results show that the fractures parallel to the connecting line of the injection-production well can lead to an early thermal breakthrough, resulting in a thermal recovery performance decrease, while fractures perpendicular to the connecting line between the production and injection wells can enhance the production temperature of an EGS, when compared with the reservoir without fractures. The production temperature drop rate of the EGS with percolated fracture network is much quicker than that of the EGS with an isolated fracture network. Additionally, short fractures can lessen the potential for working fluid preferred flow channels to emerge; therefore, an EGS with short fractures may operate better than an EGS with lengthy fractures.
This paper presents a numerical study on thermal energy mining from hot dry rock (HDR) using an enhanced geothermal system (EGS). In these simulations, the thermal–hydraulic–mechanical (THM) coupling model is employed on the basis of the embedded discrete fracture model. The evolution of physical fields of the fractured reservoir, including temperature field, pressure field, and stress field is studied over time, and the effects of different controllable factors, such as fracture morphology, fluid injection rate, and the distances between the injection well and producing well on the heat recovery capacity are investigated. The results show that the fracture morphology significantly influences heat extraction performance. The working fluid mainly flows along with the fracture networks, which causes locally low temperatures and low mean effective stress near fractures. The porosity and permeability increase due to the decrease in mean effective stress. For reservoir models with inclined fractures, there will be a significant decrease in the extraction temperature. In the 30th year, the decline in the heat recovery rate is 46.6%, which is much higher than the model without inclined fractures. Moreover, the increasing injection temperature barely influences the production temperature, while it significantly decreases the heat recovery of the EGS. When the injection and production well spacing is small, increasing the well spacing is an effective way to improve the thermal extraction performance of the EGS. In the model in the paper, the heat production increases up to 13.7% when the injection-production well spacing is increased from 150 m to 450 m. The results of this work could provide guidance for the optimization and operation of EGS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.