The iterative hard-thresholding algorithm (ISTA) is one of the most popular optimization solvers to achieve sparse codes. However, ISTA suffers from following problems: 1) ISTA employs non-adaptive updating strategy to learn the parameters on each dimension with a fixed learning rate. Such a strategy may lead to inferior performance due to the scarcity of diversity; 2) ISTA does not incorporate the historical information into the updating rules, and the historical information has been proven helpful to speed up the convergence. To address these challenging issues, we propose a novel formulation of ISTA (named as adaptive ISTA) by introducing a novel \textit{adaptive momentum vector}. To efficiently solve the proposed adaptive ISTA, we recast it as a recurrent neural network unit and show its connection with the well-known long short term memory (LSTM) model. With a new proposed unit, we present a neural network (termed SC2Net) to achieve sparse codes in an end-to-end manner. To the best of our knowledge, this is one of the first works to bridge the $\ell_1$-solver and LSTM, and may provide novel insights in understanding model-based optimization and LSTM. Extensive experiments show the effectiveness of our method on both unsupervised and supervised tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.