Risk propagation is occurring as an exceptional challenge to supply chain management. Identifying which supplier has the greater possibility of interruptions is pivotal for managing the occurrence of these risks, which have a significant impact on the supply chain. Identifying and predicting how these risks propagate and understanding how these risks dynamically diffuse if control strategies are installed can help to better manage supply chain risks. Drawing on the complex systems and epidemiological literature, we research the impact of the global supply network structure on risk propagation and supply network health. The SIR model is used to dynamically identify and predict the risk status of the supply chain risk at different times. The results show that there is a significant relationship between network structure and risk propagation and supply network health. We demonstrate the importance of supply network visibility and of the extraction of the information of node firms. We build up an R package for geometric graphs and epidemics. This paper applies the R package to model the supply chain risk for an automotive manufacturing company. The R package provides a firm to construct the complicated interactions among suppliers and display how these interactions impact on risks. Theoretically, our study adapts a computational approach to contribute to the understanding of risk management and supply networks. Managerially, our study demonstrates how the supply chain network analysis approach can benefit the managers by developing a more holistic framework of system-wide risk propagation. This provides guidance for network governance policies, which will lead to healthier supply chains.
For multi-robot cooperative formation and global path planning, we propose to adjust the repulsive field function and insert a dynamic virtual target point to solve the local minima and target unreachability problems of the traditional artificial potential field (APF) method. The convergence speed and global optimization accuracy of ant colony optimization (ACO) are improved by introducing improved state transfer functions with heuristic information of the artificial potential field method and optimizing the pheromone concentration update rules. A hybrid algorithm combining APF and improved ACO is used to calculate an optimal path from the starting point to the end point for the leader robot. A cooperative multi-robot formation control method combining graph theory and consistency algorithm is proposed based on path planning of the leader robot. Taking AGVs in a logistics distribution center as an example, the feasibility of the improved algorithm and its effectiveness in solving the multi-robot path planning problem are verified.
This study analyzes the impact of Industry 4.0 and SARS-CoV-2 on the manufacturing industry, in which manufacturing entities are faced with insufficient resources and uncertain services; however, the current study does not fit this situation well. A multi-service composition for complex manufacturing tasks in a cloud manufacturing environment is proposed to improve the utilization of manufacturing service resources. Combining execution time, cost, energy consumption, service reliability and availability, a quality of service (QoS) model is constructed as the evaluation standard. A hybrid search algorithm (VS–ABC algorithm) based on the vortex search algorithm (VS) and the artificial bee colony algorithm (ABC) is introduced and combines the advantages of the two algorithms in search range and calculation speed. We take the customization production of automobiles as an example, and the case study shows that the VS–ABC algorithm has better applicability compared with traditional vortex search and artificial bee colony algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.