Patients with primary and bone metastatic breast cancer have significantly reduced survival and life quality. Due to the poor drug delivery efficiency of anti-metastasis therapy and the limited response rate of immunotherapy for breast cancer, effective treatment remains a formidable challenge. In this work, engineered macrophages (Oxa(IV)@ZnPc@M) carrying nanomedicine containing oxaliplatin prodrug and photosensitizer are designed as near-infrared (NIR) light-activated drug vectors, aiming to achieve enhanced chemo/photo/immunotherapy of primary and bone metastatic tumors. Oxa(IV)@ZnPc@M exhibits an anti-tumor M1 phenotype polarization and can efficiently home to primary and bone metastatic tumors. Additionally, therapeutics inside Oxa(IV)@ZnPc@M undergo NIR triggered release, which can kill primary tumors via combined chemo-photodynamic therapy and induce immunogenic cell death simultaneously. Oxa(IV)@ZnPc@M combined with anti-PD-L1 can eliminate primary and bone metastatic tumors, activate tumor-specific antitumor immune response, and improve overall survival with limited systemic toxicity. Therefore, this all-in-one macrophage provides a treatment platform for effective therapy of primary and bone metastatic tumors.
BackgroundChina’s mHealth market is on track to become a global leader by industry size. The Chinese mobile app market and health care system have peculiarities that distinguish them from other app markets. To date, Chinese mHealth apps have not been systematically investigated.ObjectiveThe objective of this study was to provide an overview of Chinese mHealth apps as of December 2015.MethodsWe identified and investigated the most downloaded apps from the iOS and Android platforms. For each app, we analyzed and recorded its main service offered, mHealth initiative, disease and specialty focus, app cost, target user, Web app availability, and emphasis on information security. Standard descriptive statistics were used.ResultsA total of 234 apps met the inclusion criteria and were investigated. The apps targeting nonhealth care professionals focused on providing telemedicine and appointment-making services. The apps targeting health care professionals focused on education and peer reviewed articles. The most common disease-specific apps focused primarily on diabetes, hypertension, and hepatitis management. Most apps were free and available on both iOS and Android platforms.ConclusionsThe primary mHealth initiatives targeted by the apps reflect Chinese patients’ demand for access to medical care. Disease-specific apps are also representative of disease prevalence in China. Government press releases suggest that new policies on the horizon may shift the industry.
BackgroundMany university students are lacking adequate physical exercise and are failing to develop physical activity (PA) behaviors in China. PA app use could improve this situation.ObjectiveThe aim of this study was to use the unified theory of acceptance and use of technology (UTAUT) to investigate the intention to use PA apps among university students in Guangzhou, China, and how body mass index (BMI) moderates the effects of UTAUT in explaining PA app use intention.MethodsA cross-sectional study was conducted among 1704 university students from different universities in Guangzhou, China. The UTAUT model was used to measure the determinants of intention to use PA apps.ResultsOf the participants, 41.8% (611/1461) intended to use PA apps. All three UTAUT-related scales (performance expectancy, effort expectancy, and social influence) were positively associated with the intention to use PA apps after adjusting for background variables (adjusted odds ratio 1.10-1.31, P<.001). The performance expectancy scale had stronger associations with the intention to use PA apps among those whose BMI were beyond normal range compared with those whose BMI were within normal range (P<.001).ConclusionsUTAUT is useful for understanding university students’ intention to use PA apps. Potential moderating effects should be kept in mind when designing UTAUT-based interventions to improve PA via app use.
In May 2014, China formally confirmed the first human infection with the novel H5N6 avian influenza virus (AIV) in Sichuan Province. Before the first human case was reported, surveillance of AIVs in wild birds resulted in the detection of three H5N6 viruses in faecal samples from migratory waterfowl in Chenhu wetlands, Hubei Province, China. Genetic and phylogenetic analyses revealed that these three novel viruses were closely related to the H5N6 virus that has caused human infections in China since 2014. A Bayesian phylogenetic reconstruction of all eight segments suggests multiple reassortment events in the evolution of these viruses. The hemagglutinin (HA) and neuraminidase (NA) originated from the H5N2 and H6N6 AIVs, respectively, whereas all six internal genes were derived from avian H5N1 viruses. The reassortant may have occurred in eastern China during 2012–2013. A phylogeographic analysis of the HA and NA genes traced the viruses to southern China, from where they spread to other areas via eastern China. A receptor-binding test showed that H5N6 viruses from migratory waterfowl had human-type receptor-binding activity, suggesting a potential for transmission to humans. These data suggest that migratory waterfowl may play a role in the dissemination of novel H5N6 viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.