Adsorption of a cationic dye, cresyl violet, on SnO 2 and SiO 2 nanoclusters and nanocrystalline thin films results in the formation of H-aggregates. These dyes are photochemically and electrochemically active and extend the photoresponse of large bandgap semiconductors such as SnO 2 . Photocurrent generation in dye capped nanocrystalline films of SnO 2 has been demonstrated with visible light excitation. A photon-tophotocurrent generation efficiency around 1% has been observed at 510 nm. Back electron transfer between the photoinjected electron and the oxidized sensitizer plays an important role in controlling the efficiency of net electron transfer. Transient absorption and microwave absorption measurements of the dye aggregate capped SnO 2 films suggest that the back electron transfer is multiexponential and most is completed within a few hundred nanoseconds. The activation energy of the back electron transfer process is very low (∼1.7 kJ/mol).
The rapid development of Internet of Things and artificial intelligence brings increasing attention on the harvesting of distributed energy by using triboelectric nanogenerator (TENG), especially the direct current TENG (DC-TENG). It is essential to select appropriate triboelectric materials for obtaining a high performance TENG. In this work, we provide a set of rules for selecting the triboelectric materials for DC-TENG based on several basic parameters, including surface charge density, friction coefficient, polarization, utilization rate of charges, and stability. On the basis of the selection rules, polyvinyl chloride, used widely in industry rather than in TENG, is selected as the triboelectric layer. Its effective charge density can reach up to ~8.80 mC m−2 in a microstructure-designed DC-TENG, which is a new record for all kinds of TENGs. This work can offer a basic guideline for the triboelectric materials selection and promote the practical applications of DC-TENG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.