With widespread abuse of antibiotics, bacterial resistance has increasingly become a serious threat. Acinetobacter baumannii has emerged as one of the most important hospital-acquired pathogens worldwide. Bacteriophages (also called “phages”) could be used as a potential alternative therapy to meet the challenges posed by such pathogens. Endolysins from phages have also been attracting increasing interest as potential antimicrobial agents. Here, we isolated 14 phages against A. baumannii, determined the lytic spectrum of each phage, and selected one with a relatively broad host range, named vB_AbaP_PD-6A3 (PD-6A3 for short), for its biological characteristics. We over-expressed and purified the endolysin (Ply6A3) from this phage and tested its biological characteristics. The PD-6A3 is a novel phage, which can kill 32.4% (179/552) of clinical multidrug resistant A. baumannii (MDRAB) isolates. Interestingly, in vitro, this endolysin could not only inhibit A. baumannii, but also that of other strains, such as Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA). We found that lethal A. baumannii sepsis mice could be effectively rescued in vivo by phage PD-6A3 and endolysin Ply6A3 intraperitoneal injection. These characteristics reveal the promising potential of phage PD-6A3 and endolysin Ply6A3 as attractive candidates for the control of A. baumannii-associated nosocomial infections.
The ddPCR-based cccDNA detection system is a sensitive and accurate assay for the quantification of cccDNA in HBV-transfected HepG2.215 cellular DNA samples and may represent an important method for future application in monitoring cccDNA fluctuation during antiviral therapy.
The bacteria LPS is one of the leading endotoxins responsible for sepsis; its sensing pathway–induced pyroptosis plays an important role in innate immunity. However, excessive pyroptosis might cause immunological diseases, even multiple organ failure and death by undefined mechanisms. Given that the development of acute kidney injury (AKI) in patients with sepsis causes significant morbidity and mortality, the mechanism of pyroptosis in regulating septic AKI remains unknown. In this study, we establish a zebrafish crispant in vivo analysis model and reveal that both caspy2 and gasdermin Eb (GSDMEb) contribute to lethal LPS-induced septic shock. Meanwhile, the in vitro analysis reveals that caspy2 activation can specifically cleave GSDMEb to release its N terminus to mediate pyroptosis, which functions as GSDMD in mammals. Interestingly, we establish an in vivo propidium iodide–staining method and reveal that the caspy2–GSDMEb signaling cascade is essential for enhancing renal tubular damage during lethal LPS-induced septic shock, whereas administration of the zebrafish-specific GSDMEb-derived peptide inhibitor Ac-FEID-CMK can attenuate mortality and septic AKI in vivo. Moreover, we confirm that either caspase-11 or GSDMD deficiency decreases both inflammatory cytokines and kidney dysfunction enzyme release and prolongs survival in a murine model of septic shock. Taken together, these findings demonstrate an evolutionary executor for pyroptosis in zebrafish and reveal that the pyroptosis of renal tubular cells is a major cause of septic AKI, and also provide an ideal in vivo screening model for potential antisepsis therapeutic strategies.
a b s t r a c tThe inter-flat dispersion of hazardous air pollutants in residential built environment has become a growing concern, especially in crowed urban areas. The purpose of present study is to investigate the wind induced air pollutant transmission and cross contamination routes in typical buildings. In this paper, a series of experiments was carried out in a boundary layer wind tunnel using a 1:30 scaled model that represented the typical configuration of rectangular multi-storey residential buildings in Shanghai. Sulfur hexafluoride (SF 6 ) was employed as tracer gas in the wind tunnel tests. The conditions under two ventilation modes, i.e. single-sided natural ventilation and cross natural ventilation, were compared. The tracer gas concentration distributions under four approaching wind angles were monitored and analyzed. Computational Fluid Dynamics (CFD) method was adopted to assist in analyzing airflow patterns. The experiment results elucidated that in the two ventilation scenarios, both of the vertical and horizontal inter-flat airborne transmission could proceed. The wind direction played a key role on the pollutant concentration distribution. Compared with the single-sided ventilation mode, cross ventilation could weaken the air pollutant dispersion along the vertical direction when the contamination source was on the windward or on the leeward unit. When the wind blowing parallelly to the source unit window, namely the source room was on the sideward, cross ventilation would not suppress the vertical transport on one hand, but reinforce the horizontal transmission on the other hand. The study is helpful for the analysis of infection risk of respiratory diseases in the residential buildings.
Hepatocellular carcinoma (HCC) is one of the most malignant tumors in Chinese people and offers poor prognosis. Tumor tissue, like normal tissue, is hierarchically differentiated. Thus, minor tumor cell populations able to differentiate, such as stem cells, sustain tumor self-renewal and proliferation. The fact that liver cancer stem cells (CSCs) with different surface markers appear heterogeneous with respect to oncogenesis and drug resistance indicates that subpopulations of surface markers preserve the hierarchical potential of differentiation during proliferation, deterioration and relapse. The epithelial to mesenchymal transition (EMT) is correlated to tumor malignancy and aggression, and hepatocytes bearing EMT have obvious hierarchical differentiation potential with respect to signaling pathways such as transforming growth factor β, Wnt/β-catenin and microRNA. Therefore, it may be more effective for early diagnosis to monitor HCC recurrence using peripherally circulating CSCs, and these may also offer potential for HCC immunotherapy or for targeting HCC treatment using these markers. Thus, we reviewed the generation, hierarchical differentiation and clinical application of hepatic CSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.